1. Kondo M, Kita K, Yokota H. Effects of tea leaf waste of green tea, oolong tea, and black tea addition on sudangrass silage quality and
in vitro gas production. J Sci Food Agric 2004;84:721–7.
https://doi.org/10.1002/jsfa.1718
2. Guo G, Yu CQ, Wang Q, Xin PC, Shimojo M, Shao T. Silage fermentation characteristics of Italian ryegrass (L
olium multiflorum Lam.) harvested at various times on a sunny day. Crop Sci 2014;54:851–8.
https://doi.org/10.2135/cropsci2012.12.0692
3. Zhang XQ, Jin YM, Zhang YJ, Yu Z, Yan WH. Silage quality and preservation of
Urtica cannabina ensiled alone and with additive treatment. Grass Forage Sci 2014;69:405–14.
https://doi.org/10.1111/gfs.12036
6. Ellis JL, Bannink A, Hindrichsen IK, et al. The effect of lactic acid bacteria included as a probiotic or silage inoculant on
in vitro rumen digestibility, total gas and methane production. Anim Feed Sci Technol 2016;211:61–74.
https://doi.org/10.1016/j.anifeedsci.2015.10.016
7. McDonald P. The biochemistry of silage. Chichester, UK: John Wiley & Sons, Ltd; 1981.
8. Owens VN, Albrecht KA, Muck RE. Protein degradation and ensiling characteristics of red clover and alfalfa wilted under varying levels of shade. Can J Plant Sci 1999;79:209–22.
https://doi.org/10.4141/P98-034
9. Mertens DR. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. J AOAC Int 2002;85:1217–40.
14. Takahashi T, Horiguchi K, Goto M. Effect of crushing unhulled rice and the addition of fermented juice of epiphytic lactic acid bacteria on the fermentation quality of whole crop rice silage, and its digestibility and rumen fermentation status in sheep. Anim Sci J 2005;76:353–8.
https://doi.org/10.1111/j.1740-0929.2005.00275.x
15. France J, Dijkstra J, Dhanoa MS, Lopez S, Bannink A. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed
in vitro: derivation of models and other mathematical considerations. Br J Nutr 2000;83:143–50.
https://doi.org/10.1017/S0007114500000180
16. Carro MD, Ranilla MJ, Tejido ML. Using an
in vitro gas production technique to examine feed additives: effects of correcting values for different blanks. Anim Feed Sci Technol 2005;123:173–84.
https://doi.org/10.1016/j.anifeedsci.2005.04.045
17. Ørskov ER. Manipulation of rumen fermentation for maximum food utilization. Bourne GH, editorWorld review of nutrition and dietetics. Basel, Switzerland: Karger; 1975. p. 152–82.
https://doi.org/10.1159/000397977
18. Nkosi BD, Meeske R, Van der Merwe HJ, Groenewald IB. Effects of homofermentative and heterofermentative bacterial silage inoculants on potato hash silage fermentation and digestibility in rams. Anim Feed Sci Technol 2010;157:195–200.
https://doi.org/10.1016/j.anifeedsci.2010.03.008
20. Kung L, Shaver RD, Grant RJ, Schmidt RJ. Silage review: interpretation of chemical, microbial, and organoleptic components of silages. J Dairy Sci 2018;101:4020–33.
https://doi.org/10.3168/jds.2017-13909
21. Li P, Tang H, Feng T, et al. Effects of UV radiation on the process of wilting and application of additives at ensiling on the fermentation quality of Siberian wildrye silage on the Qinghai-Tibetan plateau. Grassl Sci 2018;64:61–8.
https://doi.org/10.1111/grs.12174
22. McDonald P, Edwards RA, Greenhalgh JFD, Morgan CA, Sinclair LA. Animal nutrition. Harlow, Essex, UK: Longman Scientific & Technical; 1995.
24. Adesogan AT, Salawu MB. The effect of different additives on the fermentation quality, aerobic stability and
in vitro digestibility of pea/wheat bi-crop silages containing contrasting pea to wheat ratios. Grass Forage Sci 2002;57:25–32.
https://doi.org/10.1046/j.1365-2494.2002.00298.x
25. Muck RE, Nadeau EMG, McAllister TA, Contreras-Govea FE, Santos MC, Kung L. Silage review: recent advances and future uses of silage additives. J Dairy Sci 2018;101:3980–4000.
https://doi.org/10.3168/jds.2017-13839
26. Jahanzad E, Sadeghpour A, Hashemi M, Keshavarz Afshar R, Hosseini MB, Barker AV. Silage fermentation profile, chemical composition and economic evaluation of millet and soya bean grown in monocultures and as intercrops. Grass Forage Sci 2016;71:584–94.
https://doi.org/10.1111/gfs.12216
27. Palmer MJA, Jessop NS, Fawcett R, Illius AW. Interference of indirect gas produced by grass silage fermentation acids in an
in vitro gas production technique. Anim Feed Sci Technol 2005;123:185–96.
https://doi.org/10.1016/j.anifeedsci.2005.04.049
29. Muck RE, Filya I, Contreras-Govea FE. Inoculant effects on alfalfa silage:
in vitro gas and volatile fatty acid production. J Dairy Sci 2007;90:5115–25.
https://doi.org/10.3168/jds.2006-878
30. Chen L, Guo G, Yuan XJ, Zhang J, Li JF, Shao T. Effects of applying molasses, lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and
in vitro gas production of total mixed ration silage prepared with oat-common vetch intercrop on the Tibetan Plateau. J Sci Food Agric 2016;96:1678–85.
https://doi.org/10.1002/jsfa.7271