1. Denman K, Brasseur G, Chidthaisong A, et al. Couplings between changes in the climate system and biogeochemistry. Solomon S, Qin D, Manning M, editorsClimate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press; 2007. p. 499–587.
2. Wuebbles DJ, Hayhoe K. Atmospheric methane and global change. Earth Sci Rev 2002;57:177–210.
3. Patra AK. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Environ Monit Assess 2012;184:1929–52.
4. Grainger C, Beauchemin KA. Can enteric methane emissions from ruminants be lowered without lowering their production. Anim Feed Sci Technol 2011;166–67:308–20.
5. Kamra DN, Agarwal N, Chaudhary LC. Inhibition of ruminal methanogenesis by tropical plants containing secondary compounds. Int Congr Ser 2006;1293:156–63.
7. Chopin T, Sawhney M. Seaweeds and their mariculture. Steele JH, Thorpe SA, Turekian KK, editorsThe encyclopedia of ocean sciences. Oxford, UK: Elsevier; 2009. p. 4477–87.
8. Paul N, Tseng CK. Seaweed. Lucas JS, Southgate PC, editorsAquaculture: farming aquatic animals and plants. 2nd editionOxford, UK: Blackwell publishing Ltd; 2012. p. 268–84.
9. Chowdhury S, Huque K, Khatun M. Algae in animal production. In : Agracultural Science of Biodiversity and Sustainability Workshop; Tune Landboskole, Denmark. 1995. p. 3–7.
10. Bozic A, Anderson R, Carstens G, et al. Effects of the methane-inhibitors nitrate, nitroethane, lauric acid, Lauricidin
® and the Hawaiian marine algae Chaetoceros on ruminal fermentation
in vitro
. Biore Technol 2009;100:4017–25.
11. Plaza M, Cifuentes A, Ibanez E. In the search of new functional food ingredients from algae. Trends Food Sci Technol 2008;19:31–9.
12. Holdt SL, Kraan S. Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 2011;23:543–97.
16. Koike S, Kobayashi Y. Development and use of competitive PCR assays for the rumen cellulolytic bacteria:
Fibrobacter succinogenes,
Ruminococcus albus and
Ruminococcus flavefaciens
. FEMS Microbiol Ecol 2001;204:361–6.
17. SAS Institute Inc. SAS/STAT user’s guide: version 9.2 edn. Cary, NC, USA: SAS Institute Inc.; 2002.
18. Ha JK, Lee SS, Moon YS, et al. Ruminant nutrition and physiology. Seoul, Korea: Seoul National University Press; 2005.
19. Denis C, Morançais M, Li M, et al. Study of the chemical composition of edible red macroalgae
Grateloupia turuturu from Brittany (France). J Food Chem 2010;119:913–7.
20. Dubois B, Tomkins NW, Kinley RD, et al. Effect of tropical algae as additives on rumen
in vitro gas production and fermentation characteristics. Am J Plant Sci 2013;4:34–43.
22. Ntaikou I, Gavala HN, Kornaros M, et al. Hydrogen production from sugars and sweet sorghum biomass using
Ruminococcus albus
. Int J Hydrogen Energy 2008;33:1153–63.
23. Latham MJ, Wolin MJ. Fermentation of cellulose by
Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl Environ Microbiol 1977;34:297–301.
25. Mitsumori M, Sun W. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian-Australas J Anim Sci 2008;21:144–54.
27. Davyt D, Fernandez R, Suescun L, et al. New sesquiterpene derivatives from the red alga Laurencia scoparia. Isolation, structure determination, and anthelmintic activity. J Nat Prod 2001;64:1552–5.
29. Mehrez AZ, Ørskov ER, Mcdonald I. Rates of rumen fermentation in relation to ammonia concentration. Br J Nutr 1977;38:437–43.
30. Larsen M, Kristensen NB. Effect of abomasal glucose infusion on splanchnic amino acid metabolism in periparturient dairy cows. J Dairy Sci 2009;92:3306–18.