Go to Top Go to Bottom
Anim Biosci > Accepted Articles
https://doi.org/10.5713/ab.21.0279    [Accepted] Published online September 15, 2021.
Effects of L-glutamine supplementation on degradation rate and rumen fermentation characteristics in vitro
Jung-Keun Suh1  , Jalil Ghassemi Nejad1  , Yoon-Seok Lee2  , Hong-Sik Kong3  , Jae-Sung Lee1, Hong gu Lee1,* 
1Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea
2Department of Biotechnology, College of Agriculture and Life Science, Hankyong National University, Anseong, Gyeonggi-do 17579, Republic of Korea
3Gyeonggi Regional Research Center, Hankyong National University, Anseong 17579, Republic of Korea
Correspondence:  Hong gu Lee, Tel: +82-2-450-0523, Fax: +82-2-455-1044, Email: hglee66@konkuk.ac.kr
Received: 15 June 2021   • Revised: 23 July 2021   • Accepted: 7 September 2021
Two follow-up studies (experiments 1 and 2) were conducted to determine the effects of L-glutamine supplementation on degradation and rumen fermentation characteristics in vitro.
First, rumen liquor from three cannulated cows was used to test L-Gln (50 mM) degradation rate and ammonia-N production at 6, 12, 24, 36, and 48 h after incubation (exp. 1). Second, rumen liquor from two cannulated steers was used to assess the effects of five levels of L-Gln including 0 (control), 0.5, 1, 2, and 3% at 0, 3, 6, 12, 24, 36, and 48 h after incubation on fermentation characteristics, gas production, and degradability of nutrients (exp. 2).
In exp. 1, L-Gln degradation rate and ammonia-N concentrations increased over time (p<0.001). In exp. 2, pH was reduced significantly as incubation time elapsed (p<0.001). Total gas production tended to increase in all groups as incubation time increased. Acetate and propionate tended to increase by increasing Gln levels, whereas levels of total volatile fatty acids (VFAs) were the highest in 0.5% and 3% Gln groups (p<0.001). The branched-chain VFA showed both linear and quadratic effects showing the lowest values in the 1% Gln group particularly after 6 h incubation (p<0.001). L-Gln increased CP degradability (p<0.001), showing the highest degradability in the 0.5% Gln group regardless of incubation time (p<0.05). Degradability of acid detergent fiber and neutral detergent fiber showed a similar pattern showing the highest values in 0.5% Gln group (p<0.10).


Although L-Gln showed no toxicity when it was supplemented at high dosages (2~3% of DM), 0.5% L-Gln demonstrated the positive effects on main factors including VFAs production in-vitro. The results of this study need to be verified in further in-vivo study.
Keywords: L-glutamine; Degradability of Nutrients; Degradation Rate; Gas Production; In-vitro Fermentation

Editorial Office
Asian-Australasian Association of Animal Production Societies(AAAP)
Room 708 Sammo Sporex, 23, Sillim-ro 59-gil, Gwanak-gu, Seoul 08776, Korea   
TEL : +82-2-888-6558    FAX : +82-2-888-6559   
E-mail : animbiosci@gmail.com               

Copyright © 2021 by Animal Bioscience.

Developed in M2PI

Close layer
prev next