3. Poulsen M, Schwab C, Borg Jensen B, et al. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun 2013;4:1428.
https://doi.org/10.1038/ncomms2432
12. Stevenson DM, Weimer PJ. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 2007;75:165–74.
https://doi.org/10.1007/s00253-006-0802-y
13. Yeoman CJ, Fields CJ, Lepercq P, et al. In vivo competitions between fibrobacter succinogenes, ruminococcus flavefaciens, and ruminoccus albus in a gnotobiotic sheep model revealed by multi-omic analyses. Mbio 2021;12:10.1128/mbio.03533.20
https://doi.org/10.1128/mbio.03533-20
15. Rodríguez Hernáez J, Cerón Cucchi ME, Cravero S, et al. The first complete genomic structure of Butyrivibrio fibrisolvens and its chromid. Microb Genomics 2018;4:e000216.
https://doi.org/10.1099/mgen.0.000216
17. Paul SS, Deb SM, Punia BS, Singh D, Kumar R. Fibrolytic potential of anaerobic fungi (Piromyces sp.) isolated from wild cattle and blue bulls in pure culture and effect of their addition on in vitro fermentation of wheat straw and methane emission by rumen fluid of buffaloes. J Sci Food Agric 2010;90:1218–26.
https://doi.org/10.1002/jsfa.3952
20. Emerson EL, Weimer PJ. Fermentation of model hemicelluloses by Prevotella strains and Butyrivibrio fibrisolvens in pure culture and in ruminal enrichment cultures. Appl Microbiol Biotechnol 2017;101:4269–78.
https://doi.org/10.1007/s00253-017-8150-7
29. McAllister TA, Dong Y, Yank LJ, et al. Cereal grain digestion by selected strains of ruminal fungi. Can J Microbiol 1993;39:367–76.
https://doi.org/10.1139/m93-054
30. Liu J, Wang JK, Zhu W, et al. Monitoring the rumen pectinolytic bacteria Treponema saccharophilum using real-time PCR. FEMS Microbiol Ecol 2014;87:576–85.
https://doi.org/10.1111/1574-6941.12246
33. Tan P, Liu H, Zhao J, et al. Amino acids metabolism by rumen microorganisms: Nutrition and ecology strategies to reduce nitrogen emissions from the inside to the outside. Sci Total Environ 2021;800:149596.
https://doi.org/10.1016/j.scitotenv.2021.149596
35. Belanche A, Doreau M, Edwards JE, Moorby JM, Pinloche E, Newbold CJ. Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. J Nutr 2012;142:1684–92.
https://doi.org/10.3945/jn.112.159574
38. Prins RA, van Rheenen DL, van’t Klooster AT. Characterization of microbial proteolytic enzymes in the rumen. Antonie van Leeuwenhoek 1983;49:585–95.
https://doi.org/10.1007/BF00399852
42. Wallace RJ, McKain N, Newbold CJ. Metabolism of small peptides in rumen fluid. Accumulation of intermediates during hydrolysis of alanine oligomers, and comparison of peptidolytic activities of bacteria and protozoa. J Sci Food Agric 1990;50:191–9.
https://doi.org/10.1002/jsfa.2740500207
44. Jarvis GN, Moore ERB. Lipid metabolism and the rumen microbial ecosystem. Timmis KN, editorHandbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg, Germany: Springer; 2010. p. 2245–57.
https://doi.org/10.1007/978-3-540-77587-4_163
47. Jenkins TC, Wallace RJ, Moate PJ, Mosley EE. BOARD-INVITED REVIEW: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J Anim Sci 2008;86:397–412.
https://doi.org/10.2527/jas.2007-0588
48. Nagaraja TG. Microbiology of the rumen. Millen DD, De Beni Arrigoni M, Lauritano Pacheco RD, editorsRumenology. Cham: Springer International Publishing; 2016. p. 39–61.
https://doi.org/10.1007/978-3-319-30533-2_2
51. Gylswyk van NO. Succiniclasticum ruminis gen. nov., sp. nov., a ruminal bacterium converting succinate to propionate as the sole energy-yielding mechanism. Int J Syst Evol Microbiol 1995;45:297–300.
https://doi.org/10.1099/00207713-45-2-297
52. Wei W, Zhen Y, Wang Y, Shahzad K, Wang M. Advances of rumen functional bacteria and the application of micro-encapsulation fermentation technology in ruminants: a review. Fermentation 2022;8:564.
https://doi.org/10.3390/fermentation8100564
58. Liu J, Chen H, Zhu Q, et al. A novel pathway of direct methane production and emission by eukaryotes including plants, animals and fungi: an overview. Atmos Environ 2015;115:26–35.
https://doi.org/10.1016/j.atmosenv.2015.05.019
60. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 1998;5:R245–9.
https://doi.org/10.1016/s1074-5521(98)90108-9
64. Ross EM, Moate PJ, Marett L, Cocks BG, Hayes BJ. Investigating the effect of two methane-mitigating diets on the rumen microbiome using massively parallel sequencing. J Dairy Sci 2013;96:6030–46.
https://doi.org/10.3168/jds.2013-6766
75. Andrews SJ, Rothnagel JA. Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet 2014;15:193–204.
https://doi.org/10.1038/nrg3520
86. Shinkai T, Mitsumori M, Sofyan A, et al. Comprehensive detection of bacterial carbohydrate-active enzyme coding genes expressed in cow rumen. Anim Sci J 2016;87:1363–70.
https://doi.org/10.1111/asj.12585
88. Denman SE, Tomkins NW, McSweeney CS. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol 2007;62:313–22.
https://doi.org/10.1111/j.1574-6941.2007.00394.x
91. Schiebenhoefer H, Van Den Bossche T, Fuchs S, Renard BY, Muth T, Martens L. Challenges and promise at the interface of metaproteomics and genomics: an overview of recent progress in metaproteogenomic data analysis. Expert Rev Proteomics 2019;16:375–90.
https://doi.org/10.1080/14789450.2019.1609944
95. Deusch S, Seifert J. Catching the tip of the iceberg – Evaluation of sample preparation protocols for metaproteomic studies of the rumen microbiota. Proteomics 2015;15:3590–5.
https://doi.org/10.1002/pmic.201400556
97. Kueger S, Steinhauser D, Willmitzer L, Giavalisco P. High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J 2012;70:39–50.
https://doi.org/10.1111/j.1365-313X.2012.04902.x
100. Saleem F, Ametaj BN, Bouatra S, et al. A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. J Dairy Sci 2012;95:6606–23.
https://doi.org/10.3168/jds.2012-5403
101. Ametaj BN, Zebeli Q, Saleem F, et al. Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain in the diet of dairy cows. Metabolomics 2010;6:583–94.
https://doi.org/10.1007/s11306-010-0227-6