Go to Top Go to Bottom
Anim Biosci > Volume 35(8); 2022 > Article
Animal Breeding and Genetics
Animal Bioscience 2022;35(8): 1129-1140.
https://doi.org/10.5713/ab.21.0463    Published online January 5, 2022.
Exploring effects of different male parent crossings on sheep muscles and related regulatory genes using mRNA-Seq
Jinping Shi1  , Quanwei Zhang2  , Yali Song1  , Zhaomin Lei1  , Lingjuan Fu1  , Shuru Cheng1,* 
1College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
2College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
Correspondence:  Shuru Cheng, Tel: +86-931-763-2509, Email: chengsr@gsau.edu.cn
Received: 11 October 2021   • Revised: 8 November 2021   • Accepted: 17 December 2021
With improvements in living standards and increase in global population, the demand for meat products has been increasing; improved meat production from livestock could effectively meet this demand. In this study, we examined the differences in the muscle traits of different male crossbred sheep and attempted to identify key genes that regulate these traits.
Dubo sheep×small-tailed Han sheep (DP×STH) and Suffolk×small-tailed Han sheep (SFK×STH) were selected to determine meat quality and production performance by Masson staining. Transcriptome sequencing and bioinformatic analysis were performed to identify differentially expressed genes (DEGs) related to meat quality. The presence of DEGs was confirmed by real-time polymerase chain reaction.
The production performance of SFK×STH sheep was better than that of DP×STH sheep, but the meat quality of DP×STH sheep was better than that of SFK×STH sheep. The muscle fiber diameter of DP×STH sheep was smaller than that of SFK×STH sheep. Twenty-two DEGs were identified. Among them, four gene ontology terms were related to muscle traits, and three DEGs were related to muscle or muscle fibers. There were no significant differences in the number of single nucleotide mutations and mutation sites in the different male parent cross combinations.


This study provides genetic resources for future sheep muscle development and cross-breeding research.
Keywords: Cross; Male Parent; Meat quality; Regulatory Gene; Sheep

Editorial Office
Asian-Australasian Association of Animal Production Societies(AAAP)
Room 708 Sammo Sporex, 23, Sillim-ro 59-gil, Gwanak-gu, Seoul 08776, Korea   
TEL : +82-2-888-6558    FAX : +82-2-888-6559   
E-mail : animbiosci@gmail.com               

Copyright © 2022 by Animal Bioscience.

Developed in M2PI

Close layer
prev next