1. Khan MA, Lee HJ, Lee WS, et al. Starch source evaluation in calf starter: II. Ruminal parameters, rumen development, nutrient digestibilities, and nitrogen utilization in Holstein calves. J Dairy Sci 2008;91:1140–9.
2. Baldwin RLV, McLeod KR, Klotz JL, Heitmann RN. Rumen development, intestinal growth and hepatic metabolism in the pre- and postweaning ruminant. J Dairy Sci 2004;87:E55–E65.
3. Svihus B, Uhlen AK, Harstad OM. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch. Anim Feed Sci Technol 2005;122:303–20.
4. Offner A, Bach A, Sauvant D. Quantitative review of
in situ starch degradation in the rumen. Anim Feed Sci Technol 2003;106:81–93.
5. Ren W, Zhang AZ, Jiang N, et al. Effects of different amylose to amylopectin ratios on serum indices related to glucose metabolism and glucose transporter expression in fattening lambs. Anim Feed Sci Technol 2015;202:106–11.
6. NRC (National Research Council). Nutrient requirements of small ruminants: sheep, goats, cervids and new world camelids. Washington, DC, USA: National Academy Press; 2007.
7. Stobo IJF, Roy JHB, Gaston HJ. Rumen development in the calf. The effect of diets containing different proportions of concentrates to hay on rumen development. Br J Nutr 1966;20:153–74.
8. Chaney AL, Marbach EP. Modified reagents for determination of urea and ammonia. Clin Chem 1962;8:130–2.
9. Cotta Michael A, Russell James B. Effect of peptides and amino acids on efficiency of rumen bacterial protein synthesis in continuous culture. J Dairy Sci 1982;65:226–34.
10. Broderick G, Craig WM. Metabolism of peptides and amino acids during
in vitro protein degradation by mixed rumen organisms. J Dairy Sci 1989;72:2540–8.
11. Suárez BJ, Reenen CGV, Beldman G, et al. Effects of supplementing concentrates differing in carbohydrate composition in veal calf diets: I. Animal performance and rumen fermentation characteristics. J Dairy Sci 2006;89:4365–75.
12. Wang YH, Xu M, Wang FN, et al. Effect of dietary starch on rumen and small intestine morphology and digesta pH in goats. Livest Sci 2009;122:48–52.
13. AOAC. Official methods of analysis. 15th edAssoc Off Anal Chem. Arlington, VA, USA: AOAC International; 1990.
14. Hall MB. Neutral detergent-soluble carbohydrates nutritional relevance and analysis. Gainesville, FL, USA: University of Florida; 2001.
15. Englyst HN, Kingman SM, Cummings JH. Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 1992;46:S33–S50.
16. Huber JT, Silva AG, Campos OF, Mathieu CM. Influence of feeding different amounts of milk on performance health and absorption capacity of baby calves. J Dairy Sci 1984;67:2957–63.
17. Naeem A, Drackley JK, Stamey J, Loor JJ. Role of metabolic and cellular proliferation genes in ruminal development in response to enhanced plane of nutrition in neonatal Holstein calves. J Dairy Sci 2012;95:1807–20.
18. Drackley JK. Calf nutrition from birth to breeding. Vet Clin North Am Food Anim Pract 2008;24:55–86.
19. Gulmez BH, Turkmen II. Effect of starch sources with different degradation rates on ruminal fermentation of lactating dairy cows. Rev Med Vet 2007;158:92–9.
20. Aldrich JM, Muller LD, Varga GA, Griel LC. Nonstructural carbohydrate and protein effects on rumen fermentation, nutrient flow, and performance of dairy cows. J Dairy Sci 1993;76:1091–105.
21. Bannink A, Kogut J, Dijkstra J, et al. Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. J Theor Biol 2006;238:36–51.
22. Lane MA, Th BR, Jesse BW. Sheep rumen metabolic development in response to age and dietary treatments. J Anim Sci 2000;78:1990–6.
23. Moran AW, Al-Rammahi M, Zhang C, et al. Sweet taste receptor expression in ruminant intestine and its activation by artificial sweeteners to regulate glucose absorption. J Dairy Sci 2014;97:4955–72.
24. Sun T, Lærke HN, Jørgensen H, Keb K. The effect of extrusion cooking of different starch sources on the
in vitro and
in vivo digestibility in growing pigs. Anim Feed Sci Technol 2006;131:66–85.
25. Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 2001;81:1031–64.
26. Norouzian MA, Valizadeh R. Effect of forage inclusion and particle size in diets of neonatal lambs on performance and rumen development. J Anim Physiol Anim Nutr 2014;98:1095–101.
28. Tamate H, Mcgilliard AD, Jacobson NL, Getty R. Effect of various dietaries on the anatomical development of the stomach in the calf. J Dairy Sci 1962;45:408–20.
29. Cavini S, Iraira S, Siurana A, et al. Effect of sodium butyrate administered in the concentrate on rumen development and productive performance of lambs in intensive production system during the suckling and the fattening periods. Small Rumin Res 2015;123:212–7.
30. Khan MA, Weary DM, von Keyserlingk MA. Effects of milk ration on solid feed intake, weaning, and performance in dairy heifers. J Dairy Sci 2011;94:1071–81.