2. Knap PW, Rauw WM. Selection for high production in pigs. Rauw W, editorResource allocation theory applied to farm animal production. Wallingford, UK: CABI International; 2009. p. 210–29.
3. Yang TS. Wild to domestic: body and organ size matter fitness in boars. Jenkins OP, editorAdvances in zoology research. NY, USA: Nova Science Publishers Inc; 2012. p. 187–200.
5. Hermesch S, Li L, Doeschl-Wilson AB, Gilbert H. Selection for productivity and robustness traits in pigs. Anim Prod Sci 2015;55:1437–47.
https://doi.org/10.1071/AN15275
12. Zhang J, Khazalwa EM, Abkallo HM, et al. The advancements, challenges, and future implications of the CRISPR/Cas9 system in swine research. J Genet Genomics 2021;48:347–60.
https://doi.org/10.1016/j.jgg.2021.03.015
13. Petersen GEL, Buntjer J, Hely FS, Byrne TJ, Whitelaw B, Doeschl-Wilson A. Gene editing in Farm Animals: A Step Change for Eliminating Epidemics on our Doorstep? bioRxiv. 2021. April. 19[preprint].
https://doi.org/10.1101/2021.04.19.440533
21. Richter A, Streubel J, Boch J. TAL effector DNA-binding principles and specificity. Kühn R, Wurst W, Wefers B, editorsMethods in Molecular Biology. 1338:New York, NY, USA: Humana Press; 2016. p. 9–25.
https://doi.org/10.1007/978-1-4939-2932-0_2
23. Cermak T, Starker CG, Voytas DF. Efficient design and assembly of custom TALENs using the golden gate platform. Pruett-Miller S, editorChromosomal mutagenesis. Methods in molecular biology (methods and protocols). 1239:New York, NY, USA: Humana Press; 2015. p. 133–59.
https://doi.org/10.1007/978-1-4939-1862-1_7
26. Deng P, Carter S, Fink K. Design, construction, and application of transcription activation-like effectors. Manfredsson F, Benskey M, editorsViral vectors for gene therapy. Methods in molecular biology. 1937:New York, NY, USA: Humana Press; 2019. p. 47–58.
https://doi.org/10.1007/978-1-4939-9065-8_3
27. Nitsch S, Mussolino C. Generation of TALE-based designer epigenome modifiers. Jeltsch A, Rots M, editorsEpigenome editing. Methods in molecular biology. 1767:New York, NY, USA: Humana Press; 2018. p. 89–109.
https://doi.org/10.1007/978-1-4939-7774-1_4
39. Grobet L, Martin LJ, Poncelet D, et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 1997;17:71–4.
https://doi.org/10.1038/ng0997-71
40. Grobet L, Poncelet D, Royo LJ, et al. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mamm Genome 1998;9:210–3.
https://doi.org/10.1007/s003359900727
46. Zou YL, Li ZY, Zou YJ, et al. Generation of pigs with a Belgian Blue mutation in MSTN using CRISPR/Cpf1-assisted ssODN-mediated homologous recombination. J Integr Agric 2019;18:1329–36.
https://doi.org/10.1016/S2095-3119(19)62694-8
47. Paek HJ, Luo ZB, Choe HM, et al. Association of myostatin deficiency with collagen related disease-umbilical hernia and tippy toe standing in pigs. Transgenic Res 2021;30:663–74.
https://doi.org/10.1007/s11248-021-00275-6
49. Li R, Zeng W, Ma M, et al. Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted pigs. Transgenic Res 2020;29:149–63.
https://doi.org/10.1007/s11248-020-00188-w
51. Zou Y, Li Z, Zou Y, Hao H, Li N, Li Q. An FBXO40 knockout generated by CRISPR/Cas9 causes muscle hypertrophy in pigs without detectable pathological effects. Biochem Biophys Res Commun 2018;498:940–5.
https://doi.org/10.1016/j.bbrc.2018.03.085
54. Trayhurn P, Temple NJ, Van Aerde J. Evidence from immunoblotting studies on uncoupling protein that brown adipose tissue is not present in the domestic pig. Can J Physiol Pharmacol 1989;67:1480–5.
https://doi.org/10.1139/y89-239
59. de la Fuente J, Cabezas-Cruz A, Pacheco I. Alpha-gal syndrome: challenges to understanding sensitization and clinical reactions to alpha-gal. Expert Rev Mol Diagn 2020;20:905–11.
https://doi.org/10.1080/14737159.2020.1792781
61. Jahan M, Thomsona PC, Wynna PC, Wang B. The non-human glycan, N-glycolylneuraminic acid (Neu5Gc), is not expressed in all organs and skeletal muscles of nine animal species. Food Chem 2021;343:128439.
https://doi.org/10.1016/j.foodchem.2020.128439
66. Yen CH, Tai HC, Peng SH, Yang TS, Tu CF. Scaffold derived from GGTA1 and CMAH double knockout pigs elicits only slight inflammation in a gene-edited pig model. Materialia 2020;14:100836.
https://doi.org/10.1016/j.mtla.2020.100836
69. Gu H, Zhou Y, Yang J, et al. Targeted overexpression of PPARγ in skeletal muscle by random insertion and CRISPR/Cas9 transgenic pig cloning enhances oxidative fiber formation and intramuscular fat deposition. FASEB J 2021;35:e21308.
https://doi.org/10.1096/fj.202001812RR
76. Tanihara F, Hirata M, Nguyen NT, et al. Generation of CD163-edited pig via electroporation of the CRISPR/Cas9 system into porcine in vitro-fertilized zygotes. Anim Biotechnol 2021;32:147–54.
https://doi.org/10.1080/10495398.2019.1668801
78. Popescu L, Gaudreault NN, Whitworth KM, et al. Genetically edited pigs lacking CD163 show no resistance following infection with the ASFV isolate, Georgia 2007-1. Virology 2017;501:102–6.
https://doi.org/10.1016/j.virol.2016.11.012
81. Van Breedam W, Delputte PL, Van Gorp H, et al. Porcine reproductive and respiratory syndrome virus entry into the porcine macrophage. J Gen Virol 2010;91:Pt 71659–67.
https://doi.org/10.1099/vir.0.020503-0
84. Whitworth KM, Rowland RRR, Ewen CL, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol 2016;34:20–2.
https://doi.org/10.1038/nbt.3434
86. Whitworth KM, Prather RS. Gene editing as applied to prevention of reproductive porcine reproductive and respiratory syndrome. Mol Reprod Dev 2017;84:926–3.
https://doi.org/10.1002/mrd.22811
88. Sanchez-Torres C, Gomez-Puertas P, Gomez-del-Moral M, et al. Expression of porcine CD163 on monocytes/macrophages correlates with permissiveness to African swine fever infection. Arch Virol 2003;148:2307–23.
https://doi.org/10.1007/s00705-003-0188-4
95. Sun R, Leng Z, Zhai SL, Chen D, Song C. Genetic variability and phylogeny of current Chinese Porcine epidemic diarrhea virus strains based on spike, ORF3, and membranegenes. Sci World J 2014;2014:208439.
https://doi.org/10.1155/2014/208439