5. Martin BD, Schwab E. Symbiosis: “Living together” in chaos. Stud Hist Biol 2012;4:7–25.
11. Zhang Y, Li C, Yuan Z, Wang R, Angelidaki I, Zhu G. Syntrophy mechanism, microbial population, and process optimization for volatile fatty acids metabolism in anaerobic digestion. Chem Eng J 2023;452:139137.
https://doi.org/10.1016/j.cej.2022.139137
12. Dong YH, Zhang LH. Quorum sensing and quorum-quenching enzymes. J Microbiol 2005;43:101–9.
22. Ghali I, Shinkai T, Mitsumori M. Mining of luxS genes from rumen microbial consortia by metagenomic and metatranscriptomic approaches. Anim Sci J 2016;87:666–73.
https://doi.org/10.3168/jds.2017-13356
26. Erickson DL, Nsereko VL, Morgavi DP, Selinger LB, Rode LM, Beauchemin KA. Evidence of quorum sensing in the rumen ecosystem: detection of N-acyl homoserine lactone autoinducers in ruminal contents. Can J Microbiol 2002;48:374–8.
https://doi.org/10.1139/w02-022
28. Dziva F, van Diemen PM, Stevens MP, Smith AJ, Wallis TS. Identification of Escherichia coli O157: H7 genes influencing colonization of the bovine gastrointestinal tract using signature-tagged mutagenesis. Microbiology 2004;150:3631–45.
https://doi.org/10.1099/mic.0.27448-0
30. González LA, Manteca X, Calsamiglia S, Schwartzkopf-Genswein KS, Ferret A. Ruminal acidosis in feedlot cattle: Interplay between feed ingredients, rumen function and feeding behavior (a review). Anim Feed Sci Technol 2012;172:66–79.
https://doi.org/10.1016/j.anifeedsci.2011.12.009
36. Mitsumori M, Xu L, Kajikawa H, et al. Possible quorum sensing in the rumen microbial community: detection of quorum-sensing signal molecules from rumen bacteria. FEMS Microbiol Lett 2003;219:47–52.
https://doi.org/10.1016/s0378-1097(02)01192-8
37. Gorenc G, Lukas F, Avgustin G. Examination of ai-2 quorum sensing system in Prevotella bryantii and Prevotella ruminicola-like strains by using bioluminiscence assay. Acta Agric Slov 2007;90:107–13.
38. Asanuma N, Yoshii T, Hino T. Molecular characterization and transcription of the luxS gene that encodes LuxS autoinducer 2 synthase in Streptococcus bovis. Curr Microbiol 2004;49:366–71.
https://doi.org/10.1007/s00284-004-4356-x
39. Harrington A, Tal-Gan Y. Identification of Streptococcus gallolyticus subsp. gallolyticus (biotype I) competence-stimulating peptide pheromone. J Bacteriol 2018;200:10–128.
https://doi.org/10.1128%2FJB.00709-17
43. Burrell PC. The detection of environmental autoinducing peptide quorum-sensing genes from an uncultured Clostridium sp. in landfill leachate reactor biomass. Lett Appl Microbiol 2006;43:455–60.
https://doi.org/10.1111/j.1472-765X.2006.01968.x
47. Huws SA, Mayorga OL, Theodorou MK, et al. Successional colonization of perennial ryegrass by rumen bacteria. Lett Appl Microbiol 2013;56:186–96.
https://doi.org/10.1111/lam.12033
48. Huws SA, Edwards JE, Creevey CJ, et al. Temporal dynamics of the metabolically active rumen bacteria colonizing fresh perennial ryegrass. FEMS Microbiol Ecol 2016;92:fiv137.
https://doi.org/10.1093/femsec/fiv137
50. Landini P, Antoniani D, Burgess JG, Nijland R. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl Microbiol Biotechnol 2010;86:813–23.
https://doi.org/10.1007/s00253-010-2468-8
51. Nkrumah JD, Okine EK, Mathison GW, et al. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J Anim Sci 2006;84:145–53.
https://doi.org/10.2527/2006.841145x
55. Ellis JL, Kebreab E, Odongo NE, McBride BW, Okine EK, France J. Prediction of methane production from dairy and beef cattle. J Dairy Sci 2007;90:3456–66.
https://doi.org/10.3168/jds.2006-675