3. Braun T, Gautel M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol 2011;12:349–61.
https://doi.org/10.1038/nrm3118
10. Rubert J, Zachariasova M, Hajslova J. Advances in high-resolution mass spectrometry based on metabolomics studies for food--a review. Food Addit Contam: Part A 2015;32:1685–708.
https://doi.org/10.1080/19440049.2015.1084539
11. Consonni R, Cagliani LR. The potentiality of NMR-based metabolomics in food science and food authentication assessment. Magn Reson Chem 2019;57:558–78.
https://doi.org/10.1002/mrc.4807
12. García-Cañas V, Simó C, Herrero M, Ibáñez E, Cifuentes A. Present and future challenges in food analysis: foodomics. Anal Chem 2012;84:10150–9.
https://doi.org/10.1021/ac301680q
13. Junot C, Fenaille F, Colsch B, Bécher F. High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spectrom Rev 2014;33:471–500.
https://doi.org/10.1002/mas.21401
15. Stolz A, Jooss K, Hocker O, Romer J, Schlecht J, Neususs C. Recent advances in capillary electrophoresis-mass spectrometry: Instrumentation, methodology and applications. Electrophoresis 2019;40:79–112.
https://doi.org/10.1002/elps.201800331
16. Guitton Y, Dervilly-Pinel G, Jandova R, Stead S, Takats Z, Le Bizec B. Rapid evaporative ionisation mass spectrometry and chemometrics for high-throughput screening of growth promoters in meat producing animals. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018;35:900–10.
https://doi.org/10.1080/19440049.2017.1421778
20. Cameron SJS, Alexander JL, Bolt F, et al. Evaluation of direct from sample metabolomics of human feces using rapid evaporative ionization mass spectrometry. Anal Chem 2019;91:13448–57.
https://doi.org/10.1021/acs.analchem.9b02358
22. Sugimoto M, Kaneko M, Onuma H, et al. Changes in the charged metabolite and sugar profiles of pasteurized and unpasteurized Japanese sake with storage. J Agric Food Chem 2012;60:2586–93.
https://doi.org/10.1021/jf2048993
25. Kim YHB, Ma D, Setyabrata D, et al. Understanding postmortem biochemical processes and post-harvest aging factors to develop novel smart-aging strategies. Meat Sci 2018;144:74–90.
https://doi.org/10.1016/j.meatsci.2018.04.031
28. Sitz BM, Calkins CR, Feuz DM, Umberger WJ, Eskridge KM. Consumer sensory acceptance and value of domestic, Canadian, and Australian grass-fed beef steaks. J Anim Sci 2005;83:2863–8.
https://doi.org/10.2527/2005.83122863x
29. Gruber SL, Tatum JD, Scanga JA, Chapman PL, Smith GC, Belk KE. Effects of postmortem aging and USDA quality grade on Warner-Bratzler shear force values of seventeen individual beef muscles1. J Anim Sci 2006;84:3387–96.
https://doi.org/10.2527/jas.2006-194
30. Bratcher CL, Johnson DD, Littell RC, Gwartney BL. The effects of quality grade, aging, and location within muscle on Warner–Bratzler shear force in beef muscles of locomotion. Meat Sci 2005;70:279–84.
https://doi.org/10.1016/j.meatsci.2005.01.013
32. Busch WA, Jr FCP, Goll DE. Molecular properties of post-mortem muscle. 4. Effect of temperature on adenosine triphosphate degradation, isometric tension parameters, and shear resistance of bovine muscle. J Food Sci 1967;32:390–4.
https://doi.org/10.1111/j.1365-2621.1967.tb09692.x
33. Muroya S, Oe M, Nakajima I, Ojima K, Chikuni K. CE-TOF MS-based metabolomic profiling revealed characteristic metabolic pathways in postmortem porcine fast and slow type muscles. Meat Sci 2014;98:726–35.
https://doi.org/10.1016/j.meatsci.2014.07.018
34. Meinert L, Tikk K, Tikk M, et al. Flavour development in pork. Influence of flavour precursor concentrations in longissimus dorsi from pigs with different raw meat qualities. Meat Sci 2009;81:255–62.
https://doi.org/10.1016/j.meatsci.2008.07.031
36. Maga JA. Organoleptic properties of umami substances. Kawamura Y, Kare MR, editorsUmami: A Basic Taste. New York, USA: Marcel Dekker Inc; 1987. p. 255–70.
39. Yaylayan VA, Keyhani A, Wnorowski A. Formation of sugar-specific reactive intermediates from (13)C-labeled L-serines. J Agric Food Chem 2000;48:636–41.
https://doi.org/10.1021/jf990687a
42. Joo ST, Kauffman RG, Kim BC, Park GB. The relationship of sarcoplasmic and myofibrillar protein solubility to colour and water-holding capacity in porcine longissimus muscle. Meat Sci 1999;52:291–7.
https://doi.org/10.1016/S0309-1740(99)00005-4
45. Melody JL, Lonergan SM, Rowe LJ, Huiatt TW, Mayes MS, Huff-Lonergan E. Early postmortem biochemical factors influence tenderness and water-holding capacity of three porcine muscles. J Anim Sci 2004;82:1195–205.
https://doi.org/10.2527/2004.8241195x
46. Zhang WG, Lonergan SM, Gardner MA, Huff-Lonergan E. Contribution of postmortem changes of integrin, desmin and μ-calpain to variation in water holding capacity of pork. Meat Sci 2006;74:578–85.
https://doi.org/10.1016/j.meatsci.2006.05.008
47. Yu Q, Tian X, Shao L, Li X, Dai R. Targeted metabolomics to reveal muscle-specific energy metabolism between bovine longissimus lumborum and psoas major during early postmortem periods. Meat Sci 2019;156:166–73.
https://doi.org/10.1016/j.meatsci.2019.05.029
49. Muroya S, Nomura R, Nagai H, Ojima K, Matsukawa K. Metabolomic profiling of postmortem aged muscle in Japanese Brown beef cattle revealed an interbreed difference from Japanese Black beef. Anim Biosci. 2033. Jul. 26[Epub].
https://doi.org/10.5713/ab.22.0202
51. Graham SF, Kennedy T, Chevallier O, et al. The application of NMR to study changes in polar metabolite concentrations in beef longissimus dorsi stored for different periods post mortem. Metabolomics 2010;6:395–404.
https://doi.org/10.1007/s11306-010-0206-y
54. Yu Q, Tian X, Shao L, Li X, Dai R. Mitochondria changes and metabolome differences of bovine longissimus lumborum and psoas major during 24 h postmortem. Meat Sci 2020;166:108112.
https://doi.org/10.1016/j.meatsci.2020.108112
55. Wang LL, Han L, Ma XL, Yu QL, Zhao SN. Effect of mitochondrial apoptotic activation through the mitochondrial membrane permeability transition pore on yak meat tenderness during postmortem aging. Food Chem 2017;234:323–31.
https://doi.org/10.1016/j.foodchem.2017.04.185
56. Wang LL, Yu QL, Han L, et al. Study on the effect of reactive oxygen species-mediated oxidative stress on the activation of mitochondrial apoptosis and the tenderness of yak meat. Food Chem 2018;244:394–402.
https://doi.org/10.1016/j.foodchem.2017.10.034
57. Ma D, Kim YHB, Cooper B, et al. Metabolomics profiling to determine the effect of postmortem aging on color and lipid oxidative stabilities of different bovine muscles. J Agric Food Chem 2017;65:6708–16.
https://doi.org/10.1021/acs.jafc.7b02175
59. Hazard D, Fernandez X, Pinguet J, et al. Functional genomics of the muscle response to restraint and transport in chickens. J Anim Sci 2011;89:2717–30.
https://doi.org/10.2527/jas.2010-3288
60. Mitacek RM, Ke Y, Prenni JE, et al. Mitochondrial degeneration, depletion of NADH, and oxidative stress decrease color stability of wet-aged beef longissimus steaks. J Food Sci 2019;84:38–50.
https://doi.org/10.1111/1750-3841.14396
61. Chandel NS. Navigating metabolism. Cold Spring Harbor, New York, USA: Cold Spring Harbor Laboratory Press; 2015.
62. Sergeeva TF, Shirmanova MV, Zlobovskaya OA, et al. Relationship between intracellular pH, metabolic co-factors and caspase-3 activation in cancer cells during apoptosis. Biochim Biophys Acta Mol Cell Res 2017;1864:604–11.
https://doi.org/10.1016/j.bbamcr.2016.12.022
63. Ma J, Yu Q, Han L. The effect of postmortem pH decline rate on caspase-3 activation and tenderness of bovine skeletal muscle during aging. J Food Biochem 2022;46:e14215.
https://doi.org/10.1111/jfbc.14215
68. Li X, Babol J, Bredie WLP, Nielsen B, Tománková J, Lundström K. A comparative study of beef quality after ageing longissimus muscle using a dry ageing bag, traditional dry ageing or vacuum package ageing. Meat Sci 2014;97:433–42.
https://doi.org/10.1016/j.meatsci.2014.03.014
73. Muroya S, Oe M, Ojima K. Thiamine accumulation and thiamine triphosphate decline occur in parallel with ATP exhaustion during postmortem aging of pork muscles. Meat Sci 2018;137:228–34.
https://doi.org/10.1016/j.meatsci.2017.11.035
74. Stepuro AI, Adamchuk RI, Oparin AY, Stepuro II. Thiamine inhibits formation of dityrosine, a specific marker of oxidative injury, in reactions catalyzed by oxoferryl forms of hemoglobin. Biochemistry (Moscow) 2008;73:1031–41.
https://doi.org/10.1134/S0006297908090113