6. Aganovic K, Hertel C, Vogel RF, et al. Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Compr Rev Food Sci Food Saf 2021;20:3225–66.
https://doi.org/10.1111/1541-4337.12763
8. Lahlou RA, Bounechada M, Mohammedi A, Silva LR, Alves G. Dietary use of Rosmarinus officinalis and Thymus vulgaris as anticoccidial alternatives in poultry. Anim Feed Sci Technol 2021;273:114826.
https://doi.org/10.1016/j.anifeedsci.2021.114826
11. Yang C, Kennes YM, Lepp D, et al. Effects of encapsulated cinnamaldehyde and citral on the performance and cecal microbiota of broilers vaccinated or not vaccinated against coccidiosis. Poult Sci 2020;99:936–48.
https://doi.org/10.1016/j.psj.2019.10.036
21. Nesse LL, Bakke AM, Eggen T, et al. The risk of development of antimicrobial resistance with the use of coccidiostats in poultry diets. Eur J Nutr Food Saf 2019;11:40–3. ID: sea-189696.
https://doi.org/10.9734/EJNFS/2019/v11i130127
22. Mnisi CM, Mlambo V, Gila A, et al. Antioxidant and antimicrobial properties of selected phytogenics for sustainable poultry production. Appl Sci 2023;13:99.
https://doi.org/10.3390/app13010099
25. Alagawany M, Elnesr SS, Farag MR, et al. Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health – a comprehensive review. Vet Q 2021;41:1–29.
https://doi.org/10.1080/01652176.2020.1857887
27. Abebe E, Gugsa G. A review on poultry coccidiosis. Abyssinia J Sci Technol 2018;3:1–12.
39. Shivaramaiah C, Barta JR, Hernandez VX, Tellez G, Hargis BM. Coccidiosis: recent advancements in the immunobiology of Eimeria species, preventive measures, and the importance of vaccination as a control tool against these Apicomplexan parasites. Vet Med 2014;5:23–34.
https://doi.org//10.2147/VMRR.S57839
42. Williams RB. Intercurrent coccidiosis and necrotic enteritis of chickens: rational, integrated disease management by maintenance of gut integrity. Avian Pathol 2005;34:159–80.
https://doi.org/10.1080/03079450500112195
43. Arain MA, Nabi F, Marghazani IB, et al. In ovo delivery of nutraceuticals improves health status and production performance of poultry birds: a review. World’s Poult Sci J 2022;78:765–88.
https://doi.org/10.1080/00439339.2022.2091501
44. Lee SH, Lillehoj HS, Jang SI, et al. Effects of in ovo injection with selenium on immune and antioxidant responses during experimental necrotic enteritis in broiler chickens. Poult Sci 2014;93:1113–21.
https://doi.org/10.3382/ps.2013-03770
46. Pender CM, Kim S, Potter TD, Ritzi MM, Young M, Dalloul RA. Effects of in ovo supplementation of probiotics on performance and immunocompetence of broiler chicks to an Eimeria challenge. Benef Microbes 2016;7:699–705.
https://doi.org/10.3920/BM2016.0080
47. Sokale AO, Zhai W, Pote LM, Williams CJ, Peebles ED. Effects of coccidiosis vaccination administered by in ovo injection on Ross 708 broiler performance through 14 days of post-hatch age. Poult Sci 2017;96:2546–51.
https://doi.org/10.3382/ps/pex041
49. Huang H, Jiang Y, Zhou F, et al. A potential vaccine candidate towards chicken coccidiosis mediated by recombinant Lactobacillus plantarum with surface displayed EtMIC2 protein. Exp Parasitol 2020;215:107901.
https://doi.org/10.1016/j.exppara.2020.107901
55. Barbour E, Ayyash D, Iyer A, Harakeh S, Kumosani T. A review of approaches targeting the replacement of coccidiostat application in poultry production. Braz J Poult Sci 2015;17:405–18.
https://doi.org/10.1590/1516-635x1704405-418
57. Ahmad R, Yu YH, Hsiao FSH, et al. Probiotics as a friendly antibiotic alternative: assessment of their effects on the health and productive performance of poultry. Fermentation 2022;8:672.
https://doi.org/10.3390/fermentation8120672
59. Kovarovic J, Bystricka J, Vollmannova A, Toth T, Brindza J. Biologically valuable substances in garlic (Allium sativum L.) A review. J Cent Eur Agric 2019;20:292–304.
https://doi.org/10.5513/JCEA01/20.1.2304
61. Kim DK, Lillehoj HS, Lee SH, Lillehoj EP, Bravo D. Improved resistance to Eimeria acervulina infection in chickens due to dietary supplementation with garlic metabolites. Br J Nutr 2013;109:76–88.
https://doi.org/10.1017/S0007114512000530
62. Jang HJ, Lee HJ, Yoon DK, Ji DS, Kim JH, Lee CH. Antioxidant and antimicrobial activities of fresh garlic and aged garlic by-products extracted with different solvents. Food Sci Biotechnol 2018;27:219–25.
https://doi.org/10.1007/s10068-017-0246-4
63. Bhavaniramya S, Vishnupriya S, Al AMS, Vijayakumar R, Baskaran D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci Technol 2019;2:49–55.
https://doi.org/10.1016/j.gaost.2019.03.001
64. Habibi H, Firouzi S, Nili H, Razavi M, Asadi SL, Daneshi S. Anticoccidial effects of herbal extracts on Eimeria tenella infection in broiler chickens: in vitro and in vivo study. J Parasit Dis 2016;40:401–7.
https://doi.org/10.1007/s12639-014-0517-4
65. Christaki E, Florou PP, Giannenas I, Papazahariadou M, Botsoglou NA, Spais AB. Effect of a mixture of herbal extracts on broiler chickens infected with Eimeria tenella. Anim Res 2004;53:137–44.
https://doi.org/10.1051/animres:2004006
66. Ali M, Chand N, Khan RU, Naz S, Gul S. Anticoccidial effect of garlic (Allium sativum) and ginger (Zingiber officinale) against experimentally induced coccidiosis in broiler chickens. J Appl Anim Res 2019;47:79–84.
https://doi.org/10.1080/09712119.2019.1573731
68. Ezeorba TPC, Chukwudozie KI, Ezema CA, Anaduaka EG, Nweze EJ, Okeke ES. Potentials for health and therapeutic benefits of garlic essential oils: Recent findings and future prospects. Pharmacol Res 2022;3:100075.
https://doi.org/10.1016/j.prmcm.2022.100075
69. Gadelhaq SM, Arafa WM, Abolhadid SM. In vitro activity of natural and chemical products on sporulation of Eimeria species oocysts of chickens. Vet Parasitol 2018;251:12–6.
https://doi.org/10.1016/j.vetpar.2017.12.020
71. Hong SC. Artemisia Annua, Artemisinin, ACTs, and malaria control in Africa: tradition, science, and public policy. By Dana G. Dalrymple. Washington DC, USA: Politics and Prose; 2012. J Econ Hist 2014;74:304–6.
https://doi.org/10.1017/S0022050714000242
72. Cai TY, Zhang YR, Ji JB, Xing J. Investigation of the component in Artemisia annua L. leading to enhanced antiplasmodial potency of artemisinin via regulation of its metabolism. J Ethnopharmacol 2017;207:86–91.
https://doi.org/10.1016/j.jep.2017.06.025
73. Li J, Zhang C, Gong M, Wang M. Combination of artemisinin-based natural compounds from Artemisia annua L. for the treatment of malaria: Pharmacodynamic and pharmacokinetic studies. Phytother Res 2018;32:1415–20.
https://doi.org/10.1002/ptr.6077
75. De AGF, Horsted K, Thamsborg SM, Kyvsgaard NC, Ferreira JF, Hermansen JE. Use of Artemisia annua as a natural coccidiostat in free-range broilers and its effects on infection dynamics and performance. Vet Parasitol 2012;186:178–87.
https://doi.org/10.1016/j.vetpar.2011.11.058
76. Fatemi A, Asasi K, Razavi SM. Anticoccidial effects of Artemisia annua ethanolic extract: prevention, simultaneous challenge-medication, and treatment. Parasitol Res 2017;116:2581–9.
https://doi.org/10.1007/s00436-017-5567-y
78. Del Cacho E, Gallego M, Francesch M, Quilez J, Sánchez-Acedo C. Effect of artemisinin on oocyst wall formation and sporulation during Eimeria tenella infection. Parasitol Int 2010;59:506–11.
https://doi.org/10.1016/j.parint.2010.04.001
79. Jiao J, Yang Y, Liu M, et al. Artemisinin and Artemisia annua leaves alleviate Eimeria tenella infection by facilitating apoptosis of host cells and suppressing inflammatory response. Vet Parasitol 2018;254:172–7.
https://doi.org/10.1016/j.vetpar.2018.03.017
81. Uysal S, Ugurlu A, Zengin G, et al. Novel in vitro and in silico insights of the multi-biological activities and chemical composition of Bidens tripartita L. Food Chem Toxicol 2018;111:525–36.
https://doi.org/10.1016/j.fct.2017.11.058
83. Yang MT, Lin YX, Yang G, et al. Functional and mechanistic studies of two anti-coccidial herbs, Bidens pilosa and Artemisia indica. Planta Med 2022;88:282–91.
https://doi.org/10.1055/a-1527-9715
85. Memon FU, Yang Y, Lv F, et al. Effects of probiotic and Bidens pilosa on the performance and gut health of chicken during induced Eimeria tenella infection. J Appl Microbiol 2021;131:425–34.
https://doi.org/10.1111/jam.14928
86. Bozkurt M, Ege G, Aysul N, et al. Effect of anticoccidial monensin with oregano essential oil on broilers experimentally challenged with mixed Eimeria spp. Poult Sci 2016;95:1858–68.
https://doi.org/10.3382/ps/pew077
88. Tsinas A, Giannenas I, Voidarou C, Tzora A, Skoufos J. Effects of an oregano based dietary supplement on performance of broiler chickens experimentally infected with Eimeria acervulina and Eimeria maxima. J Poult Sci 2011;48:194–200.
https://doi.org/10.2141/jpsa.010123
91. Jeldi L, Taarabt KO, Mazri MA, Ouahmane L, Alfeddy MN. Chemical composition, antifungal and antioxidant activities of wild and cultivated Origanum compactum essential oils from the municipality of Chaoun, Morocco. S Afr J Bot 2022;147:852–8.
https://doi.org/10.1016/j.sajb.2022.03.034
92. Gadde U, Kim WH, Oh ST, Lillehoj HS. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim Health Res Rev 2017;18:26–45.
https://doi.org/10.1017/S1466252316000207
95. Lan Y, Xun S, Tamminga S, Williams B, Verstegen M, Erdi G. Real-time PCR detection of lactic acid bacteria in cecal contents of Eimeria tenella-lnfected broilers fed soybean oligosaccharides and soluble soybean polysaccharides. Poult Sci 2004;83:1696–702.
https://doi.org/10.1093/ps/83.10.1696
96. Adhikari P, Kiess A, Adhikari R, Jha R. An approach to alternative strategies to control avian coccidiosis and necrotic enteritis. J Appl Poult Res 2020;29:515–34.
https://doi.org/10.1016/j.japr.2019.11.005
97. Chand N, Faheem H, Khan RU, Qureshi MS, Alhidary IA, Abudabos AM. Anticoccidial effect of mananoligosacharide against experimentally induced coccidiosis in broiler. Environ Sci Pollut Res 2016;23:14414–21.
https://doi.org/10.1007/s11356-016-6600-x
99. Ritzi MM, Abdelrahman W, Mohnl M, Dalloul RA. Effects of probiotics and application methods on performance and response of broiler chickens to an Eimeria challenge. Poult Sci 2014;93:2772–8.
https://doi.org/10.3382/ps.2014-04207
100. Yin G, Lin Q, Wei W, et al. Protective immunity against Eimeria tenella infection in chickens induced by immunization with a recombinant C-terminal derivative of EtIMP1. Vet Immunol Immunopathol 2014;162:117–21.
https://doi.org/10.1016/j.vetimm.2014.10.009
101. Wang X, Farnell YZ, Kiess AS, Peebles ED, Wamsley KG, Zhai W. Effects of Bacillus subtilis and coccidial vaccination on cecal microbial diversity and composition of Eimeria-challenged male broilers. Poult Sci 2019;98:3839–49.
https://doi.org/10.3382/ps/pez096
102. Lee SH, Lillehoj HS, Dalloul RA, Park DW, Hong YH, Lin JJ. Influence of Pediococcus-based probiotic on coccidiosis in broiler chickens. Poult Sci 2007;86:63–6.
https://doi.org/10.1093/ps/86.1.63
105. Jankowski J, Kubinska M, Juskiewicz J, Czech A, Ognik K, Zdunczyk Z. Effect of different dietary methionine levels on the growth performance and tissue redox parameters of turkeys. Poult Sci 2017;96:1235–43.
https://doi.org/10.3382/ps/pew383
107. Zhang Q, Chen X, Eicher SD, Ajuwon KM, Applegate TJ. Effect of threonine deficiency on intestinal integrity and immune response to feed withdrawal combined with coccidial vaccine challenge in broiler chicks. Br J Nutr 2016;116:2030–43.
https://doi.org/10.1017/S0007114516003238
108. Chen YP, Cheng YF, Li XH, et al. Effects of threonine supplementation on the growth performance, immunity, oxidative status, intestinal integrity, and barrier function of broilers at the early age. Poult Sci 2017;96:405–13.
https://doi.org/10.3382/ps/pew240
109. Sarwar MS, Zhang HJ, Tsang SW. Perspectives of plant natural products in inhibition of cancer invasion and metastasis by regulating multiple signaling pathways. Curr Med Chem 2018;25:5057–87.
https://doi.org/10.2174/0929867324666170918123413
113. Zhu C, Huang K, Bai Y, et al. Dietary supplementation with berberine improves growth performance and modulates the composition and function of cecal microbiota in yellow-feathered broilers. Poult Sci 2021;100:1034–48.
https://doi.org/10.1016/j.psj.2020.10.071
116. Huang Q, Liu X, Zhao G, Hu T, Wang Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim Nutr 2018;4:137–50.
https://doi.org/10.1016/j.aninu.2017.09.004
118. Tonda RM, Rubach JK, Lumpkins BS, Mathis GF, Poss MJ. Effects of tannic acid extract on performance and intestinal health of broiler chickens following coccidiosis vaccination and/or a mixed-species Eimeria challenge. Poult Sci 2018;97:3031–42.
https://doi.org/10.3382/ps/pey158
119. Wang M, Suo X, Gu J, Zhang W, Fang Q, Wang X. Influence of grape seed proanthocyanidin extract in broiler chickens: effect on chicken coccidiosis and antioxidant status. Poult Sci 2008;87:2273–80.
https://doi.org/10.3382/ps.2008-00077
123. Ahmed E, Galal M, Abdelmageed N, et al. An in vitro evaluation of the inhibitory effects of an aqueous extract of Acacia nilotica on Eimeria tenella. SVU-Int J Vet Sci 2022;5:33–40.
126. Cheng YH, Horng YB, Chen WJ, et al. Development and validation the efficacy of Bacillus-based fermented products as an antibiotics alternative in domestic animals. Acta Sci Pol Zootech 2021;20:23–34.
https://doi.org/10.21005/asp.2021.20.3.03
129. Cheng YH, Zhang N, Han JC, Chang CW, Hsiao FSH, Yu YH. Optimization of surfactin production from Bacillus subtilis in fermentation and its effects on Clostridium perfringens-induced necrotic enteritis and growth performance in broilers. J Anim Physiol Anim Nutr 2018;102:1232–44.
https://doi.org/10.1111/jpn.12937