5. Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev 2010;23:366–84.
https://doi.org/10.1017/S0954422410000247
10. Cochrane RA, Huss AR, Aldrich GC, Stark CR, Jones CK. Evaluating chemical mitigation of salmonella typhimurium ATCC 14028 in animal feed ingredients. J Food Prot 2016;79:672–6.
https://doi.org/10.4315/0362-028X.JFP-15-320
13. NRC. Nutrient requirements of swine (11th revised ed.). Washington, DC, USA: National Academies Press; 2012.
15. Lu JJ, Zou XT, Wang YM. Effects of sodium butyrate on the growth performance, intestinal microflora and morphology of weanling pigs. J Anim Feed Sci 2008;17:568–78.
https://doi.org/10.22358/jafs/66685/2008
16. Sun W, Sun J, Li M, et al. The effects of dietary sodium butyrate supplementation on the growth performance, carcass traits and intestinal microbiota of growing-finishing pigs. J Appl Microbiol 2020;128:1613–23.
https://doi.org/10.1111/jam.14612
17. van der Meulen J, Bakker JG, Smits B, De Visser H. Effects of source of starch on net portal flux of glucose, lactate, volatile fatty acids and amino acids in the pig. Br J Nutr 1997;78:533–44.
https://doi.org/10.1079/bjn19970173
18. Biagi G, Piva A, Moschini M, Vezzali E, Roth FX. Performance, intestinal microflora, and wall morphology of weanling pigs fed sodium butyrate. J Anim Sci 2007;85:1184–91.
https://doi.org/10.2527/jas.2006-378
23. Valentini J, Da Silva AS, Fortuoso BF, et al. Chemical composition, lipid peroxidation, and fatty acid profile in meat of broilers fed with glycerol monolaurate additive. Food Chem 2020;330:127187.
https://doi.org/10.1016/j.foodchem.2020.127187
25. Dang G, Wu W, Zhang H, Everaert N. A new paradigm for a new simple chemical: butyrate & immune regulation. Food Funct 2021;12:12181–93.
https://doi.org/10.1039/d1fo02116h
26. Fang CL, Sun H, Wu J, Niu HH, Feng J. Effects of sodium butyrate on growth performance, haematological and immunological characteristics of weanling piglets. J Anim Physiol Anim Nutr 2014;98:680–5.
https://doi.org/10.1111/jpn.12122
27. De Keyser K, Dierick N, Kanto U, et al. Medium-chain glycerides affect gut morphology, immune- and goblet cells in post-weaning piglets: In vitro fatty acid screening with Escherichia coli and in vivo consolidation with LPS challenge. J Anim Physiol Anim Nutr (Berl) 2019;103:221–230.
https://doi.org/10.1111/jpn.12998
28. Vahjen W, Osswald T, Schäfer K, Simon O. Comparison of a xylanase and a complex of non starch polysaccharide-degrading enzymes with regard to performance and bacterial metabolism in weaned piglets. Arch Anim Nutr 2007;61:90–102.
https://doi.org/10.1080/17450390701203881
29. Huang C, Song P, Fan P, Chengli H, Phil T, Xi M. Dietary sodium butyrate decreases postweaning diarrhea by modulating intestinal permeability and changing the bacterial communities in weaned piglets. J Nutr 2015;145:2774–80.
https://doi.org/10.3945/jn.115.217406
31. Bertevello PL, De Nardi L, Torrinhas RS, Logullo AF, Waitzberg DL. Partial replacement of Ω-6 fatty acids with medium-chain triglycerides, but not olive oil, improves colon cytokine response and damage in experimental colitis. J Parenter Enteral Nutr 2012;36:442–8.
https://doi.org/10.1177/0148607111421788
32. Papada E, Kaliora AC, Gioxari A, Papalois A, Forbes A. Anti-inflammatory effect of elemental diets with different fat composition in experimental colitis. Br J Nutr 2014;111:1213–20.
https://doi.org/10.1017/S0007114513003632