1. Fernandez X, Monin G, Talmant A, Mourot J, Lebret B. Influence of intramuscular fat content on the quality of pig meat—1. Composition of the lipid fraction and sensory characteristics of m. Longissimus lumborum. Meat Sci 1999;53:59–65.
https://doi.org/10.1016/s0309-1740(99)00037-6
2. Harper GS, Pethick D, Oddy V, Tume R, Barendse W, Hygate L. Biological determinants of intramuscular fat deposition in beef cattle: current mechanistic knowledge and sources of variation. Sydney, Australia: Meat & Livestock Australia; 2001.
3. Guo Y, Huang Y, Hou L, et al. Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches. Genet Sel Evol 2017;21:49.
https://doi.org/10.1186/s12711-017-0295-4
5. Ropka Molik K, Zukowski K, Eckert R, Gurgul A, Piórkowska K, Oczkowicz M. Comprehensive analysis of the whole transcriptomes from two different pig breeds using RNA-Seq method. Anim Genet 2014;45:674–84.
https://doi.org/10.1111/age.12184
10. Kazak L, Rahbani JF, Samborska B, et al. Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity. Nat Metab 2019;3:360–70.
https://doi.org/10.1038/s42255-019-0035-x
12. Zhang X, Zhang Y, Wang P, et al. Adipocyte hypoxia-inducible factor 2α suppresses atherosclerosis by promoting adipose ceramide catabolism. Cell Metab 2019;30:937–51.
https://doi.org/10.1016/j.cmet.2019.09.016
13. Chen Q, Zeng Y, Wang H, et al. Molecular characterization and expression analysis of NDUFS4 gene in m. Longissimus dorsi of laiwu pig (sus scrofa). Mol Biol Rep 2013;2:1599–608.
https://doi.org/10.1007/s11033-012-2208-5
14. Chen W, Fang G, Wang S, Wang H, Zeng Y. Longissimus lumborum muscle transcriptome analysis of laiwu and yorkshire pigs differing in intramuscular fat content. Genes Genomics 2017;39:759–66.
15. Huang Y, Zhou L, Zhang J, Liu X, Huang L. A large-scale comparison of meat quality and intramuscular fatty acid composition among three Chinese indigenous pig breeds. Meat Sci 2020;168:108182.
https://doi.org/10.1016/j.meatsci.2020.108182
17. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017;45:D353–61.
https://doi.org/10.1093/nar/gkw1092
21. Huang W, Zhang X, Li A, Xie L, Miao X. Genome-wide analysis of mRNAs and lncRNAs of intramuscular fat related to lipid metabolism in two pig breeds. Cell Physiol Biochem 2018;50:2406–22.
https://doi.org/10.1159/000495101
26. Zhang S, Kang Z, Cai H, et al. Identification of novel alternative splicing of bovine lncRNA lncFAM200B and its effects on preadipocyte proliferation. J Cell Physiol 2021;236:601–11.
https://doi.org/10.1002/jcp.29887
27. Liu W, Ma C, Yang B, Yin C, Zhang B, Xiao Y. LncRNA Gm15290 sponges miR-27b to promote PPARγ-induced fat deposition and contribute to body weight gain in mice. Biochem Biophys Res Commun 2017;493:1168–75.
https://doi.org/10.1016/j.bbrc.2017.09.114
28. Wang S, Zhang Q, Zhang Y, et al. Agrimol B suppresses adipogenesis through modulation of SIRT1-PPAR gamma signal pathway. Biochem Biophys Res Commun 2016;477:454–60.
https://doi.org/10.1016/j.bbrc.2016.06.078
30. Song B, Chi Y, Li X, et al. Inhibition of Notch signaling promotes the adipogenic differentiation of mesenchymal stem cells through autophagy activation and PTEN-PI3K/Akt/mTOR pathway. Cell Physiol Biochem 2015;36:1991–2002.
https://doi.org/10.1159/000430167
32. Perez-Mancera PA, Bermejo-Rodríguez C, González-Herrero I, et al. Adipose tissue mass is modulated by SLUG (SNAI2). Hum Mol Genet 2007;16:2972–86.
https://doi.org/10.1093/hmg/ddm278
37. Masaki S, Kii I, Sumida Y, et al. Design and synthesis of a potent inhibitor of class 1 DYRK kinases as a suppressor of adipogenesis. Bioorgan Med Chem 2015;23:4434–41.
https://doi.org/10.1016/j.bmc.2015.06.018
40. China National Commission of Animal Genetic Resources. Animal genetic resources in China: pigs. Beijing, China: Agriculture Press; 2011.