1. Tormay B. A szarvasmarha és tenyésztése I-II (the cattle and cattle breeding). Budapest, Hungary: Athenaeum Irodalmi és Nyomdai RT; 1901.
2. Bodó I, Gera I, Koppány G. The Hungarian Grey cattle breed: a technical publication. Budapest, Hungary: Association of the Hungarian Grey Cattle Breeders; 1996.
4. Zsolnai A, Kovács A, Anton I, et al. Comparison of different Hungarian Grey herds as based on microsatellite analysis. Anim Sci Pap Rep 2014;32:121–30.
5. Radácsi A, Béri B, Bodó I. Szarvszín-változatok a magyar szürke szarvasmarha fajtában (evaluation of horn colour varieties in the Hungarian Grey cattle). Állattenyésztés és Takarmányozás 2008;57:291–303.
6. Meissner K. A magyarfajta szarvasmarha standardja (standard of Hungarian cattle). Köztelek 1929;39:150–1.
8. Bodó I. The maintenance of Hungarian breeds of farm animals threatened by extinction. Alderson L, editorGenetic conservation of domestic livestock. Wallingford, UK: CAB International; 1990. p. 73–84.
9. Anton I, Kovács K, Fésüs L, et al. Effect of DGAT1 and TG gene polymorphisms on intramuscular fat and on milk production traits in different cattle breeds in Hungary. Acta Vet Hung 2008;56:181–6.
https://doi.org/10.1556/avet.56.2008.2.5
10. Anton I, Zsolnai A, Holló I, Repa I, Hollo G. Effect of thyroglobulin gene polymorphism on the intramuscular fat content in cattle examined by x-ray computed tomography and Soxhlet methods. Arch Tierz 2013;56:593–6.
https://doi.org/10.7482/0003-9438-56-059
11. Ardicli S, Samli H, Alpay F, Dincel D, Soyudal B, Balci F. Association of single nucleotide polymorphisms in the
FABP4 gene with carcass characteristics and meat quality in Holstein bulls. Ann Anim Sci 2017;17:117–30.
https://doi.org/10.1515/aoas-2016-0045
12. Anton I, Huth B, Fuller I, Gabor G, Hollo G, Zsolnai A. Effect of single-nucleotide polymorphisms on the breeding value of fertility and breeding value of beef in Hungarian Simmental cattle. Acta Vet Hung 2018;66:215–25.
https://doi.org/10.1556/004.2018.020
13. Weller JI, Glick G, Shirak A, et al. Predictive ability of selected subsets of single nucleotide polymorphisms (SNPs) in a moderately sized dairy cattle population. Animal 2014;8:208–16.
https://doi.org/10.1017/S1751731113002188
15. Bene S, Giczi A, Rádli A, Polgar JP, Szabo F. Multibreed breeding value estimation based on weaning results in a beef herd in Hungary. Állattenyésztés és Takarmányozás 2013;62:218–33.
16. Bâlteanu VA, Figueiredo-Cardoso T, Amills M, et al. The footprint of recent and strong demographic decline in the genomes of Mangalitza pigs. Animal 2019;13:2440–6.
https://doi.org/10.1017/S1751731119000582
21. Morlino S, Carbone A, Ritelli M, et al.
TAB2 c.1398dup variant leads to haploinsufficiency and impairs extracellular matrix homeostasis. Hum Mutat 2019;40:1886–98.
https://doi.org/10.1002/humu.23834
22. Gomyo H, Arai Y, Tanigami A, et al. A 2-Mb sequence-ready contig map and a novel immunoglobulin superfamily gene
IGSF4 in the LOH region of chromosome 11q23.2. Genomics 1999;62:139–46.
https://doi.org/10.1006/geno.1999.6001
24. Weng L, Hübner R, Claessens A, et al. Isolation and characterization of chondrolectin (
Chodl), a novel C-type lectin predominantly expressed in muscle cells. Gene 2003;308:21–9.
https://doi.org/10.1016/S0378-1119(03)00425-6
25. Weng L, van Bockstaele DR, Wauters J, et al. A novel alternative spliced chondrolectin isoform lacking the transmembrane domain is expressed during T cell maturation. J Biol Chem 2003;278:19164–70.
https://doi.org/10.1074/jbc.M300653200
26. Han H. Identification of several key genes by microarray data analysis of bovine mammary gland epithelial cells challenged with
Escherichia coli and
Staphylococcus aureus
. Gene 2019;683:123–32.
https://doi.org/10.1016/j.gene.2018.10.004
27. Dai WT, Wang QJ, Zou YX, White RR, Liu JX, Liu HY. Short communication: comparative proteomic analysis of the lactating and nonlactating bovine mammary gland. J Dairy Sci 2017;100:5928–35.
https://doi.org/10.3168/jds.2016-12366
35. Kommadath A, te Pas MFW, Smits MA. Gene coexpression network analysis identifies genes and biological processes shared among anterior pituitary and brain areas that affect estrous behavior in dairy cows. J Dairy Sci 2013;96:2583–95.
https://doi.org/10.3168/jds.2012-5814
38. Malchiodi F, Brito LF, Schenkel FS, Christen AM, Kelton DF, Miglior F. Genome-wide association study and functional analysis of infectious and horn type hoof lesions in Canadian Holstein cattle. In : Proceedings of the World Congress on Genetics Applied to Livestock Production; 2018; Auckland, New Zealand.
39. Chen X, Cheng ZR, Zhang S, Werling D, Wathes DC. Combining genome wide association studies and differential gene expression data analyses identifies candidate genes affecting mastitis caused by two different pathogens in the dairy cow. Open J Anim Sci 2015;5:358–93.
https://doi.org/10.4236/ojas.2015.54040
41. Howard JT, Kachman SD, Snelling WM, et al. Beef cattle body temperature during climatic stress: a genome-wide association study. Int J Biometeorol 2014;58:1665–72.
https://doi.org/10.1007/s00484-013-0773-5
42. Li RW, Li C, Gasbarre LC. The vitamin D receptor and inducible nitric oxide synthase associated pathways in acquired resistance to
Cooperia oncophora infection in cattle. Vet Res 2011;42:48.
https://doi.org/10.1186/1297-9716-42-48
44. Dias MM, Cánovas A, Mantilla-Rojas C, et al. SNP detection using RNA-sequences of candidate genes associated with puberty in cattle. Genet Mol Res 2017;16:16019522.
https://doi.org/10.4238/gmr16019522
46. Yuan Z, Liu E, Liu Z, et al. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Anim Genet 2017;48:55–66.
https://doi.org/10.1111/age.12477
47. Moshaii BA, Rahimi-Mianji G, Nejati-Javaremi A, Moradi MH, Konig S. Genomic scan for selection signatures associated with mastitis in German Holstein cattle. Iran J Anim Sci 2017;48:453–61.
https://doi.org/10.22059/ijas.2017.240547.653558