1. Chapple IL. Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol 1997;24:287–96.
3. Ajakaiye JJ, Perez-Bello A, Mollineda-Trujillo A. Impact of heat stress on egg quality in layer hens supplemented with l-ascorbic acid and dl-tocopherol acetate. Vet Arhiv 2011;81:119–32.
4. Sahin K, Orhan C, Smith MO, Sahin N. Molecular targets of dietary phytochemicals for the alleviation of heat stress in poultry. Worlds Poult Sci J 2013;69:113–24.
5. Lin MJ, Chang SC, Jea YS, et al.
In vitro antioxidant capability and performance assessment of White Roman goose supplemented with dried
Toona sinensis. J Appl Anim Res 2016;44:395–402.
6. Joseph AM, Anthony TT. Food additive toxicology. NY: Marcel Dekker; 1994. p. 89–110.
7. Ansari J, Khan SH, Haq Au, Yousaf M. Effect of the levels of
Azadirachta indica dried leaf meal as phytogenic feed additive on the growth performance and haemato-biochemical parameters in broiler chicks. J Appl Anim Res 2012;40:336–45.
8. Lee TT, Yu B. Application of biologics to feedstuff. Afr J Biotechnol 2013;12:526–30.
9. Lee TT, Ciou JY, Chen CL, Yu B. Effect of
Echinacea purpurea L. on oxidative status and meat quality in Arbor Acres broilers. J Sci Food Agric 2013;93:166–72.
10. Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 2006;71:1397–421.
11. Kelloff GJ, Crowell JA, Steele VE, et al. Progress in cancer chemoprevention: development of diet-derived chemopreventive agents. J Nutr 2000;130: SupplE467–71.
12. Calabrese V, Cornelius C, Mancuso C, et al. Cellular stress response: A novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem Res 320083:2444–71.
13. Na HK, Surh YJ. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem Toxicol 2008;46:1271–8.
14. Sahin K, Orhan C, Akdemir F, et al. Tomato powder supplementation activates Nrf-2 via ERK/Akt signaling pathway and attenuates heat stress-related responses in quails. Anim Feed Sci Technol 2011;165:230–7.
15. Sahin K, Orhan C, Akdemir F, Tuzcu M, Sahin N. Resveratrol protects quail hepatocytes against heat stress: modulation of the Nrf2 transcription factor and heat shock proteins. J Anim Physiol Anim Nutr 2012;96:66–74.
16. Sahin K, Orhan C, Tuzcu Z, Tuzcu M, Sahin N. Curcumin ameloriates heat stress via inhibition of oxidative stress and modulation of Nrf2/HO-1 pathway in quail. Food Chem Toxicol 2012;50:4035–41.
17. Tuzcu M, Sahin N, Karatepe M, et al. Epigallocatechin-3-gallate supplementation can improve antioxidant status in stressed quail. Br Poult Sci 2008;49:643–8.
18. Abbas ZK, Saggu S, Sakeran MI, et al. Phytochemical, antioxidant and mineral composition of hydroalcoholic extract of chicory (
Cichorium intybus L.) leaves. Saudi J Biol Sci 2015;22:322–6.
19. Cardozo LF, Pedruzzi LM, Stenvinkel P, et al. Nutritional strategies to modulate inflammation and oxidative stress pathways via activation of the master antioxidant switch Nrf2. Biochimie 2013;95:1525–33.
20. Tsao R, Deng Z. Separation procedures for naturally occurring antioxidant phytochemicals. J Chromatogr B 2004;812:85–99.
21. Barnes S. Role of phytochemicals in prevention and treatment of prostate cancer. Epidemiol Rev 2001;23:201–5.
22. Bergman M, Varshavsky L, Gottlieb HE, Grossman S. The antioxidant activity of aqueous spinach extract: chemical identification of active fractions. Phytochemistry 2001;58:143–52.
23. Toniolo P, Van Kappel AL, Akhmedkhanov A, et al. Serum carotenoids and breast cancer. Am J Epidemiol 2001;153:1142–7.
24. Aeschbach R, Loliger J, Scott BC, et al. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol 1994;32:31–6.
25. Shi J, Yu J, Pohorly JE, Kakuda Y. Polyphenolics in grape seeds—biochemistry and functionality. J Med Food 2003;6:291–9.
26. Wang H, Cao G, Prior RL. Total antioxidant capacity of fruits. J Agric Food Chem 1996;44:701–5.
27. Rahman I, Biswas SK, Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 2006;72:1439–52.
28. Tanigawa S, Fujii M, Hou DX. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radical Bio Med 2007;42:1690–703.
29. Cuvelier ME, Richard H, Berset C. Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship. Biosci Biotechnol Biochem 1992;56:324–5.
30. Kahkonen MP, Hopia AI, Vuorela HJ, et al. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 1999;47:3954–62.
31. Han X, Shen T, Lou H. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;8:950–88.
32. Lokaewmanee K, Yamauchi K, Komori T, Saito K. Effects on egg yolk colour of paprika or paprika combined with marigold flower extracts. Ital J Anim Sci 2010;9:356–9.
33. Akdemir F, Orhan C, Sahin N, Sahin DrK, Hayirli A. Tomato powder in laying hen diets: effects on concentrations of yolk carotenoids and lipid peroxidation. Br Poult Sci 2012;53:675–80.
34. Calislar S, Uygur G. Effects of dry tomato pulp on egg yolk pigmentation and some egg yield characteristics of laying hens. J Anim Vet Adv 2010;9:96–8.
35. Sahin N, Orhan C, Tuzcu M, Sahin K, Kucuk O. The effects of tomato powder supplementation on performance and lipid peroxidation in quail. Poult Sci 2008;87:276–83.
36. Sahin K, Orhan C, Tuzcu M, et al. Epigallocatechin-3-gallate prevents lipid peroxidation and enhances antioxidant defense system via modulating hepatic nuclear transcription factors in heat-stressed quails. Poult Sci 2010;89:2251–8.
37. Wang RJ, Li DF, Bourne S. Can 2000 years of herbal medicine history help us solve problems in the year 2000? In : Biotechnology in the Feed Industry Proceedings of Alltech’s 14th Annual Symposium; Nottingham, UK: Nottingham University Press; 1998. p. 273–291.
38. Jebelli AJ, Ghazvinian K, Mahdavi A, Vayeghan AJ, Staji H, Khaligh SG. The effect of dietary
Zataria multiflora boiss: Essential oil supplementation on microbial growth and lipid peroxidation of broiler breast fillets during refrigerated storage. J Food Process Preserv 2013;37:881–8.
39. Lee TT, Chen CL, Shieh ZH, Lin JC, Yu B. Study on antioxidant activity of Echinacea purpurea L. extracts and its impact on cell viability. Afr J Biotechnol 2009;8:5097–105.
40. Matthias A, Banbury L, Bone KM, Leach DN, Lehmann RP.
Echinacea alkylamides modulate induced immune responses in T-cells. Fitoterapia 2008;79:53–8.
41. Percival SS. Use of
Echinacea in medicine. Biochem Pharmacol 20060:155–8.
42. Sullivan AM, Laba JG, Moore JA, Lee TD.
Echinacea induced macrophage activation. Immunopharmacol Immunotoxicol 2008;30:553–74.
43. Jahanian E, Jahanian R, Rahmani HR, Alikhani M. Dietary supplementation of
Echinacea purpurea powder improved performance, serum lipid profile, and yolk oxidative stability in laying hens. J Appl Anim Res 2017;45:45–51.
44. Thygesen L, Thulin J, Mortenson A, Skibsted LH, Molgaard P. Antioxidant activity of cichoric acid and alkamides from
Echinacea purpurea, alone and in combination. Food Chem 2007;101:74–81.
45. Ruberto G, Renda A, Daquino C, et al. Polyphenols constituents and antioxidant activity of grape pomace from five Sicilian red grape cultivars. Food Chem 2007;100:203–10.
46. Yilmaz Y, Toledo RT. Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid. J Agric Food Chem 2004;52:255–60.
47. Brenes A, Viveros A, Goni I, et al. Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens. Poult Sci 2008;87:307–16.
48. Ahn JH, Grun IU, Fernando LN. Antioxidant properties of natural plant extracts containing polyphenolic compounds in cooked ground beef. J Food Sci 2002;67:1364–9.
49. Hughes RJ, Brooker JD, Smyl C. Growth rate of broiler chickens given condensed tannins extracted from grape seed. Aust Poult Sci Symp 2005;67:65–8.
50. Lau DW, King AJ. Pre- and post-mortem use of grape seed extract in dark poultry meat to inhibit development of thiobarbituric acid reactive substances. J Agric Food Chem 2003;51:1602–7.
51. Manach C, Scalbert C, Morand C, Remezy C, Jiménez L. Polyphenols: Food sources and bioavailability. Am J Clin Nutr 2004;79:727–47.
52. Huang CW, Lee TT, Shih YC, Yu B. Effects of dietary supplementation of Chinese medicine herbs on polymorphonuclear neutrophil immune activity and small intestinal morphology in weanling pigs. J Anim Physiol Anim Nutr 2012;96:285–94.
54. Hseu YC, Chang WH, Chen CS, et al. Antioxidant activities of
Toona sinensis leaves extracts using different antioxidant models. Food Chem Toxicol 2008;46:105–14.
55. Yang H, Gu Q, Gao T, et al. Flavonols and derivatives of gallic acid from young leaves of
Toona sinensis (A. Juss.) Roemer and evaluation of their anti-oxidant capacity by chemical methods. Pharmacogn Mag 2014;10:185–90.
56. Tilki M, Saatci M, Kirmizibayrak T, Aksoy A. Effect of age on growth and carcass composition of native Turkish geese. Archiv für Geflügelkunde 2005;69:SupplE77–83.
58. Mamede AC, Tavares SD, Abrantes AM, et al. The role of vitamins in cancer: a review. Nutr Cancer 2011;63:479–94.
62. Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 2011;85:241–72.
66. Beeche GR. Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 2003;133:SupplE3248–54.
67. Sahin K, Tuzcu M, Gencoglu H, et al. Epigallocatechin-3-gallate activates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. Life Sci 2010;87:240–5.
68. Romeo L, Intrieri M, D’Agata V, et al. The major green tea polyphenol, (−)-epigallocatechin-3-gallate, induces heme oxygenase in rat neurons and acts as an effective neuroprotective agent against oxidative stress. J Am Coll Nutr 2009;28:Suppl_E492–9.
69. Katiyar SK, Afaq F, Perez A, Mukhtar H. Green tea polyphenol (−)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis 2001;22:287–94.
70. Meng Q, Velalar CN, Ruan R. Effects of epigallocatechin-3-gallate on mitochondrial integrity and antioxidative enzyme activity in the aging process of human fibroblast. Free Radical Bio Med 2008;44:1032–41.
71. Wei H, Zhang X, Zhao JF, et al. Scavenging of hydrogen peroxide and nhibition of ultraviolet light-induced oxidative DNA damage by aqueous extracts from green and black teas. Free Radical Bio Med 1999;26:1427–35.
72. Ali NAL, Mohammed AB, Allow AA. Effect of adding different levels of Lycopene to the ration on some lipid profile traits of the Laying hens ISA-Brown. J Biol Agric Healthc 2014;4:10–9.
73. Palozza P, Catalano A, Simone R, Cittadini A. Lycopene as a guardian of redox signalling. Acta Biochim Pol 2012;59:221–5.
74. Linnewiel K, Ernst H, Caris-Veyrat C, et al. Structure activity relationship of carotenoid derivatives in activation of the electrophile/antioxidant response element transcription system. Free Radic Biol Med 2009;47:659–67.
77. Tapia E, Zatarain-Barron ZL, Hernandez-Pando R, et al. Curcumin reverses glomerular hemodynamic alterations and oxidant stress in 5/6 nephrectomized rats. Phytomedicine 2013;20:359–66.
78. Garg R, Maru G. Dietary curcumin enhances benzo(a)pyrene-induced apoptosis resulting in a decrease in BPDE-DNA adducts in mice. J Environ Pathol Toxicol Oncol 2009;28:121–31.
79. Cheng H, Liu W, Ai X. Protective effect of curcumin on myocardial ischemia reperfusion injury in rats. Zhong Yao Cai 2005;28:920–2.
80. Ahmadi F. Effect of Turmeric (Curcumin longa) powder on performance, oxidative stress state and some of blood parameters in broilers fed on diets containing aflatoxin. Glob Vet 2010;5:312–7.
82. Dickinson DA, Iles KE, Zhang H, Blank V, Forman HJ. Curcumin alters EpRE and AP-1 binding complexes and elevates glutamate-cysteine ligase gene expression. FASEB J 2003;17:473–5.
83. Farombi EO, Shrotriya S, Na HK, Kim SH, Surh YJ. Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase–1. Food Chem Toxicol 2008;46:1279–87.
84. Surh YJ, Chun KS. Cancer chemopreventive effects of curcumin. Adv Exp Med Biol 2007;595:149–72.
85. Mancuso C, Barone E. The heme oxygenase/biliverdin reductase pathway in drug research and development. Curr Drug Metab 2009;10:579–94.
86. Liu Y, Chan F, Sun H, et al. Resveratrol protects human keratinocytes HaCaT cells from UVA-induced oxidative stress damage by downregulating Keap1 expression. Eur J Pharmacol 2011;650:130–7.
87. Palsamy P, Subramanian S. Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta 2011;1812:719–31.
89. Lopez-Velez M, Martínez-Martínez F, Del Valle-Ribes C. The study of phenoliccompounds as natural antioxidants in wine. Crit Rev Food Sci Nutr 2003;43:233–44.
90. Cao Z, Li Y. Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: protection against oxidative and electrophilic injury. Eur J Pharmacol 2004;489:39–48.
91. Rubiolo JA, Mithieux G, Vega FV. Resveratrol protects primary rat hepatocytes against oxidative stress damage: activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes. Eur J Pharmacol 2008;591:66–72.
92. Wu CH, Chen SC, Ou TT, Chyau CC, Chang YC, Wang CJ. Mulberry leaf polyphenol extracts reduced hepatic lipid accumulation involving regulation of adenosine monophosphate activated protein kinase and lipogenic enzymes. J Funct Foods 2013;5:1620–32.
93. Chan KC, Ho HH, Huang CN, Chen MC, Wang CJ. Mulberry leaf extract inhibits vascular smooth muscle cell migration involving a block of small GTPase and Akt/NF-kappaB signals. J Agric Food Chem 2009;57:9147–53.
94. Gundogdu M, Muradoglu F, Gazioglu Sensoy RI, Yilmaz H. Determination of fruit chemical properties of
M. nigra L.,
M. alba L. and
M. rubra L. by HPLC. Sci Hortic 2011;132:37–41.
95. Andallu B, Shankaran M, Ullagaddi R, Iyer U.
In vitro free radical scavenging and
in vivo antioxidant potential of mulberry (
Morus indica L.) leaves. J Herb Med 2014;4:10–17.
96. Lin WC, Lee MT, Chang YL, Shih CH, Chang SC, Yu B, Lee TT. Effects of mulberry leaves on production performance and the potential modulation of antioxidative status in laying hens. Poult Sci 2016;10.3382/ps/pew350