6. Zhang Z, Du H, Yang C, et al. Comparative transcriptome analysis reveals regulators mediating breast muscle growth and development in three chicken breeds. Anim Biotechnol 2019;30:233–41.
https://doi.org/10.1080/10495398.2018.1476377
7. Li G, Zhang T, Zhang G, et al. Analysis of gene co-expression networks and function modules at different developmental stages of chicken breast muscle. Biochem Biophys Res Commun 2019;508:177–83.
https://doi.org/10.1016/j.bbrc.2018.11.044
9. Chen JL, Zhao GP, Zheng MQ, Wen J, Yang N. Estimation of genetic parameters for contents of intramuscular fat and inosine-5’-monophosphate and carcass traits in Chinese Beijing-You chickens. Poult Sci 2008;87:1098–104.
https://doi.org/10.3382/ps.2007-00504
10. Zhou H, Deeb N, Evock-Clover CM, Ashwell CM, Lamont SJ. Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. II. body composition. Poult Sci 2006;85:1712–21.
https://doi.org/10.1093/ps/85.10.1712
11. Allais S, Hennequet-Antier C, Berri C, Salles L, Demeure O, Le Bihan-Duval E. Mapping of QTL for chicken body weight, carcass composition, and meat quality traits in a slow-growing line. Poult Sci 2019;98:1960–7.
https://doi.org/10.3382/ps/pey549
12. Li YD, Bai X, Liu X, et al. Integration of genome-wide association study and selection signatures reveals genetic determinants for skeletal muscle production traits in an F2 chicken population. J Integr Agric 2022;21:2065–75.
https://doi.org/10.1016/s2095-3119(21)63805-4
29. Sun Y, Ma Y, Wu X, Zhao T, Lu L, Yang Z. Functional and comparative analysis of two subtypes of cofilin family on cattle myoblasts differentiation. Agriculture 2022;12:1420.
https://doi.org/10.3390/agriculture12091420
31. Qadir AS, Lee J, Lee YS, Woo KM, Ryoo HM, Baek JH. Distal-less homeobox 3, a negative regulator of myogenesis, is downregulated by microRNA-133. J Cell Biochem 2018;120:2226–35.
https://doi.org/10.1002/jcb.27533
32. Rubin CJ, Zody MC, Eriksson J, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 2010;464:587–91.
https://doi.org/10.1038/nature08832
34. Shibata T, Ikawa M, Sakasai R, et al. Lens–specific conditional knockout of tropomyosin 1 gene in mice causes abnormal fiber differentiation and lens opacity. Mech Ageing Dev 2021;196:111492.
https://doi.org/10.1016/j.mad.2021.111492
36. Wang J, Sanger JM, Kang S, et al. Ectopic expression and dynamics of TPM1α and TPM1κ in myofibrils of avian myotubes. Cell Motil Cytoskeleton 2007;64:767–76.
https://doi.org/10.1002/cm.20221
37. Matsunobe M, Motohashi N, Aoki E, Tominari T, Inada M, Aoki Y. Caveolin-3 regulates the activity of Ca2+/calmodulin-dependent protein kinase II in C2C12 cells. Am J Physiol Cell Physiol 2022;323:C1137–48.
https://doi.org/10.1152/ajpcell.00077.2022
39. Hadj Sassi A, Monteil J, Sauvant P, Atgié C. Overexpression of caveolin-3-enhanced protein synthesis rather than proteolysis inhibition in C2C12 myoblasts: relationship with myostatin activity. J Physiol Biochem 2012;68:683–90.
https://doi.org/10.1007/s13105-012-0192-9
40. Galbiati F, Volonté D, Engelman JA, Scherer PE, Lisanti MP. Targeted down-regulation of caveolin-3 is sufficient to inhibit myotube formation in differentiating C2C12 myoblasts.: transient activation of p38 mitogen-activated protein kinase is required for induction of caveolin-3 expression and subsequent myotube formation. J Biol Chem 1999;274:30315–21.
https://doi.org/10.1074/jbc.274.42.30315
41. Nguyen MT, Min KH, Kim D, Park SY, Lee W. CFL2 is an essential mediator for myogenic differentiation in C2C12 myoblasts. Biochem Biophys Res Commun 2020;533:710–6.
https://doi.org/10.1016/j.bbrc.2020.11.016
43. Maak S, Neumann K, Swalve HH. Identification and analysis of putative regulatory sequences for the MYF5/MYF6 locus in different vertebrate species. Gene 2006;379:141–7.
https://doi.org/10.1016/j.gene.2006.05.007