1. Food and Agriculture Organization of the United Nations (FAO). World livestock 2011– Livestock in food security. Rome, Italy: FAO; 2011.
3. Mottet A, de Haan C, Falcucci A, Tempio G, Opio C, Gerber P. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob Food Sec 2017;14:1–8.
https://doi.org/10.1016/j.gfs.2017.01.001
4. Van Huis A, Van Itterbeeck J, Klunder H, et al. Edible insects: future prospects for food and feed security (No. 171). Rome, Italy: Food and Agriculture Organization of the United Nations; 2013.
6. Veldkamp T, Van Duinkerken G, Van Huis A, et al. Insects as a sustainable feed ingredient in pig and poultry diets: a feasibility study= Insecten als duurzame diervoedergrondstof in varkens-en pluimveevoeders: een haalbaarheidsstudie, (No. 638). Wageningen, The Netherlands: Wageningen UR Livestock Research; 2012.
9. Nakagaki BJ, Defoliart GR. Comparison of diets for mass-rearing Acheta domesticus (Orthoptera: Gryllidae) as a novelty food, and comparison of food conversion efficiency with values reported for livestock. J Econ Entomol 1991;84:891–6.
https://doi.org/10.1093/jee/84.3.891
10. Collavo A, Glew RH, Huang YS, et al. House cricket small-scale farming. Paoletti MG, editorEcological implications of minilivestock: potential of insects, rodents, frogs and snails. Boca Raton, FL, USA: CRC Press; 2005. p. 515–40.
15. Song YS, Kim MW, Moon C, et al. Extraction of chitin and chitosan from larval exuvium and whole body of edible mealworm, Tenebrio molitor. Entomol Res 2018;48:227–33.
https://doi.org/10.1111/1748-5967.12304
16. Shin CS, Kim DY, Shin WS. Characterization of chitosan extracted from Mealworm Beetle (Tenebrio molitor, Zophobas morio) and Rhinoceros Beetle (Allomyrina dichotoma) and their antibacterial activities. Int J Biol Macromol 2019;125:72–7.
https://doi.org/10.1016/j.ijbiomac.2018.11.242
17. Ramos-Elorduy J, González EA, Hernández AR, Pino JM. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J Econ Entomol 2002;95:214–20.
https://doi.org/10.1603/0022-0493-95.1.214
18. Driemeyer H. Evaluation of black soldier fly (Hermetia illucens) larvae as an alternative protein source in pig creep diets in relation to production, blood and manure microbiology parameters [Doctoral dissertation]. Stellenbosch, South Africa: Stellenbosch University; 2016.
25. Ao X, Kim IH. Effects of dietary dried mealworm (Ptecticus tenebrifer) larvae on growth performance and nutrient digestibility in weaning pigs. Livest Sci 2019;230:103815.
https://doi.org/10.1016/j.livsci.2019.09.031
27. Yoo JS, Cho KH, Hong JS, et al. Nutrient ileal digestibility evaluation of dried mealworm (Tenebrio molitor) larvae compared to three animal protein by-products in growing pigs. Asian-Australas J Anim Sci 2019;32:387–94.
https://doi.org/10.5713/ajas.18.0647
28. Cho KH, Kang SW, Yoo JS, et al. Effects of mealworm (Tenebrio molitor) larvae hydrolysate on nutrient ileal digestibility in growing pigs compared to those of defatted mealworm larvae meal, fermented poultry by-product, and hydrolyzed fish soluble. Asian-Australas J Anim Sci 2020;33:490–500.
https://doi.org/10.5713/ajas.19.0793
29. Spranghers T, Michiels J, Vrancx J, et al. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Anim Feed Sci Technol 2018;235:33–42.
https://doi.org/10.1016/j.anifeedsci.2017.08.012
30. Nekrasov R, Zelenchenkova A, Chabaev M, Ivanov G, Antonov A, Pastukhova N. PSIII-37 Dried Black Soldier Fly larvae as a dietary supplement to the diet of growing pigs. J Anim Sci 2018;96:314.
https://doi.org/10.1093/jas/sky404.691
31. Altmann BA, Neumann C, Rothstein S, Liebert F, Mörlein D. Do dietary soy alternatives lead to pork quality improvements or drawbacks? A look into micro-alga and insect protein in swine diets. Meat Sci 2019;153:26–34.
https://doi.org/10.1016/j.meatsci.2019.03.001
35. Chia SY, Tanga CM, Osuga IM, et al. Black soldier fly larval meal in feed enhances growth performance, carcass yield and meat quality of finishing pigs. J Insects Food Feed 2021;7:433–47.
https://doi.org/10.3920/JIFF2020.0072
37. Ringseis R, Peter L, Gessner DK, Meyer S, Most E, Eder K. Effect of Tenebrio molitor larvae meal on the antioxidant status and stress response pathways in tissues of growing pigs. Arch Anim Nutr 2021;75:237–50.
https://doi.org/10.1080/1745039X.2021.1950106
40. Allegretti G, Schmidt V, Talamini E. Insects as feed: species selection and their potential use in Brazilian poultry production. World’s Poult Sci J 2017;73:928–37.
https://doi.org/10.1017/S004393391700054X
41. Dankwa D, Oddoye EOK, Mzamo KB. Preliminary studies on the complete replacement of fishmeal by house-fly-larvae-meal in weaner pig diets: Effects on growth rate, carcass characteristics, and some blood constituents. Ghana J Agric Sci 2000;33:223–7.
https://doi.org/10.4314/gjas.v33i2.1874
42. Van Broekhoven S, Oonincx DGAB, Van Huis A, van Loon JJA. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J Insect Physiol 2015;73:1–10.
https://doi.org/10.1016/j.jinsphys.2014.12.005
43. Li L, Zhao Z, Liu H. Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans. Acta Astronaut 2013;92:103–9.
https://doi.org/10.1016/j.actaastro.2012.03.012
46. Rumbos CI, Athanassiou CG. The superworm, Zophobas morio (Coleoptera: Tenebrionidae): a ‘sleeping giant’ in nutrient sources. J Insect Sci 2021;21:13.
https://doi.org/10.1093/jisesa/ieab014
49. Botella-Martínez C, Lucas-González R, Pérez-Álvarez JA, Fernández-López J, Viuda-Martos M. Assessment of chemical composition and antioxidant properties of defatted flours obtained from several edible insects. Food Sci Technol Int 2021;27:383–91.
https://doi.org/10.1177/1082013220958854
51. Vandeweyer D, Milanović V, Garofalo C, et al. Real-time PCR detection and quantification of selected transferable antibiotic resistance genes in fresh edible insects from Belgium and the Netherlands. Int J Food Microbiol 2019;290:288–95.
https://doi.org/10.1016/j.ijfoodmicro.2018.10.027
52. Van Broekhoven S, Gutierrez JM, De Rijk TC, De Nijs WCM, Van Loon JJA. Degradation and excretion of the Fusarium toxin deoxynivalenol by an edible insect, the Yellow mealworm (Tenebrio molitor L.). World Mycotoxin J 2017;10:163–9.
https://doi.org/10.3920/WMJ2016.2102
53. Wynants E, Frooninckx L, Van Miert S, Geeraerd A, Claes J, Van Campenhout L. Risks related to the presence of Salmonella sp. during rearing of mealworms (Tenebrio molitor) for food or feed: Survival in the substrate and transmission to the larvae. Food Control 2019;100:227–34.
https://doi.org/10.1016/j.foodcont.2019.01.026
54. Mlček J, Adamek M, Adámková A, Borkovcová M, Bednářová M, Skácel J. Detection of selected heavy metals and micronutrients in edible insect and their dependency on the feed using XRF spectrometry. Potravinarstvo Slovak J Food Sci 2017;11:725–30.
https://doi.org/10.5219/850