3. Chen HY, Zhang Q, Yin CC, Wang CK, Gong WJ, Mei G. Detection of quantitative trait loci affecting milk production traits on bovine chromosome 6 in a Chinese Holstein population by the daughter design. J Dairy Sci 2006;89:782–90.
https://doi.org/10.3168/jds.S0022-0302(06)72140-3
4. Gebreyesus G, Lund MS, Janss L, et al. Short communication: Multi-trait estimation of genetic parameters for milk protein composition in the Danish Holstein. J Dairy Sci 2016;99:2863–6.
https://doi.org/10.3168/jds.2015-10501
6. Sanchez MP, Ferrand M, Gele M, et al. Short communication: Genetic parameters for milk protein composition predicted using mid-infrared spectroscopy in the French Montbeliarde, Normande, and Holstein dairy cattle breeds. J Dairy Sci 2017;100:6371–5.
https://doi.org/10.3168/jds.2017-12663
8. Amado M, Almeida R, Schwientek T, Clausen H. Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions. Biochim Biophys Acta Gen Subj 1999;1473:35–53.
https://doi.org/10.1016/S0304-4165(99)00168-3
9. Shahbazkia HR, Aminlari M, Cravador A. Association of polymorphism of the beta(1, 4)-
galactosyltransferase-I gene with milk production traits in Holsteins. Mol Biol Rep 2012;39:6715–21.
https://doi.org/10.1007/s11033-012-1495-1
10. Xu Q, Mei G, Sun DX, et al. Detection of genetic association and functional polymorphisms of
UGDH affecting milk production trait in Chinese Holstein cattle. BMC Genomics 2012;13:590.
https://doi.org/10.1186/1471-2164-13-590
14. Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th ednNew York, USA: Longman Scientific and Technical; 1996.
15. Huang YZ, Li MX, Wang J, et al. A 5′-regulatory region and two coding region polymorphisms modulate promoter activity and gene expression of the growth suppressor gene
ZBED6 in cattle. Plos One 2013;8:e79744.
https://doi.org/10.1371/journal.pone.0079744
19. Visser M, Palstra RJ, Kayser M. Human skin color is influenced by an intergenic DNA polymorphism regulating transcription of the nearby
BNC2 pigmentation gene. Hum Mol Genet 2014;23:5750–62.
https://doi.org/10.1093/hmg/ddu289
21. Martin ER, Lai EH, Gilbert JR, et al. SNPing away at complex diseases: Analysis of single-nucleotide polymorphisms around
APOE in Alzheimer disease. Am J Hum Genet 2000;67:383–94.
https://doi.org/10.1086/303003
22. Daenzer JM, Sanders RD, Hang D, Fridovich-Keil JL. UDP-galactose 4′-epimerase activities toward UDP-Gal and UDP-GalNAc play different roles in the development of
Drosophila melanogaster
. PLoS Genet 2012;8:e1002721.
https://doi.org/10.1371/journal.pgen.1002721
23. Schulz JM, Ross KL, Malmstrom K, Krieger M, Fridovich-Keil JL. Mediators of galactose sensitivity in UDP-galactose 4′-epimerase-impaired mammalian cells. J Biol Chem 2005;280:13493–502.
https://doi.org/10.1074/jbc.M414045200
24. Roper JR, Guther MLS, Milne KG, Ferguson MAJ. Galactose metabolism is essential for the African sleeping sickness parasite
Trypanosoma brucei
. Proc Natl Acad Sci USA 2002;99:5884–9.
https://doi.org/10.1073/pnas.092669999
25. Seo A, Gulsuner S, Pierce S, et al. Inherited thrombocytopenia associated with mutation of UDP-Galactose-4-Epimerase (
GALE). Hum Mol Genet 2019;28:133–42.
https://doi.org/10.1093/hmg/ddy334
26. Sanders RD, Sefton JMI, Moberg KH, Fridovich-Keil JL. UDP-galactose 4′ epimerase (GALE) is essential for development of
Drosophila melanogaster
. Dis Model Mech 2010;3:628–38.
https://doi.org/10.1242/dmm.005058
27. Song HB, He M, Cai ZP, et al. UDP-glucose 4-epimerase and-1,4-galactosyltransferase from the oyster
Magallana gigas as valuable biocatalysts for the production of galactosylated products. Int J Mol Sci 2018;19:1600.
https://doi.org/10.3390/ijms19061600