2. Godfrey KJ, Mathew B, Bulman JC, Shah O, Clement S, Gallicano GI. Stem cell-based treatments for Type 1 diabetes mellitus: Bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells. Diabet Med 2012; 29:14–23.
https://doi.org/10.1111/j.1464-5491.2011.03433.x
5. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic Islets. Science 2001; 292:1389–94.
https://doi.org/10.1126/science.1058866
7. Pennarossa G, Maffei S, Campagnol M, et al. Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proc Natl Acad Sci USA 2013; 110:8948–53.
https://doi.org/10.1073/pnas.1220637110
8. Jafarian A, Taghikhani M, Abroun S, Pourpak Z, Allahverdi A, Soleimani M. Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells. Mol Biol Rep 2014; 4:4783–94.
https://doi.org/10.1007/s11033-014-3349-5
9. Gabr MM, Zakaria MM, Refaie AF, et al. Insulin producing cells from adult human bone marrow mesenchymal stem cells control streptozotocin-induced diabetes in nude mice. Cell Transplant 2013; 22:133–45.
https://doi.org/10.3727/096368912X647162
11. Takemitsu H, Zhao D, Ishikawa S, Michishita M, Arai T, Yamamoto I. Mechanism of insulin production in canine bone marrow derived mesenchymal stem cells. Gen Comp Endocrinol 2013; 189:1–6.
https://doi.org/10.1016/j.ygcen.2013.04.009
12. Xie H, Wang Y, Zhang H, Qi H, Zhou H, Li FR. Role of injured pancreatic extract promotes bone marrow-derived mesenchymal stem cells efficiently differentiate into insulin-producing cells. PloS One 2013; 8:e76056
https://doi.org/10.1371/journal.pone.0076056
13. Li M, Liu G-H, Izpisua Belmonte JC. Navigating the epigenetic landscape of pluripotent stem cells. Nat Rev Mol Cell Biol 2012; 13:524–35.
https://doi.org/10.1038/nrm3393
14. Belame Shivakumar S, Bharti D, Baregundi Subbarao R, et al. Pancreatic endocrine-like cells differentiated from human umbilical cords Wharton’s jelly mesenchymal stem cells using small molecules. J Cell Physiol 2019; 234:3933–47.
https://doi.org/10.1002/jcp.27184
15. Gottlicher M, Minucci S, Zhu P, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001; 20:6969–78.
https://doi.org/10.1093/emboj/20.24.6969
18. Ock SA, Jeon BJ, Rho GJ. Comparative characterization of porcine mesenchymal stem cells derived from bone marrow extract and skin tissues. Tissue Eng Part C Methods 2010; 16:1481–91.
http://doi.org/10.1089/ten.tec.2010.0149
21. Gao Y, Jammes H, Rasmussen MA, et al. Epigenetic regulation of gene expression in porcine epiblast, hypoblast, trophectoderm and epiblast-derived neural progenitor cells. Epigenetics 2011; 6:1149–61.
https://doi.org/10.4161/epi.6.9.16954
22. Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 2004; 103:1662–8.
https://doi.org/10.1182/blood-2003-09-3070
25. Yao S, Chen S, Clark J, et al. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci USA 2006; 103:6907–12.
https://doi.org/10.1073/pnas.0602280103
27. Deb-Rinker P, Ly D, Jezierski A, Sikrska M, Walker PR. Sequential DNA methylation of the Nanog and Oct-4 upstream regions in human NT2 cells during neuronal differentiation. J Biol Chem 2005; 280:6257–60.
https://doi.org/10.1074/jbc.C400479200
28. Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 2007; 1:55–70.
https://doi.oarg/10.1016/j.stem.2007.05.014
29. Fan A, Ma K, An X, et al. Effects of TET1 knockdown on gene expression and DNA methylation in porcine induced pluripotent stem cells. Reproduction 2013; 146:569–79.
https://doi.org/10.1530/REP-13-0212