3. Su SY, Dodson MV, Li XB, Li QF, Wang HW, Xie Z. The effects of dietary betaine supplementation on fatty liver performance, serum parameters, histological changes, methylation status and the mRNA expression level of Spot14α in Landes goose fatty liver. Comp Biochem Physiol Part A Mol Integr Physiol 2009;154:308–14.
https://doi.org/10.1016/j.cbpa.2009.05.124
5. Geng TY, Yang B, Li FY, et al. Identification of protective components that prevent the exacerbation of goose fatty liver: characterization, expression and regulation of adiponectin receptors. Comp Biochem Physiol B Biochem Mol Biol 2016;194:32–8.
https://doi.org/10.1016/j.cbpb.2016.01.006
8. Mourot J, Guy G, Lagarrigue S, Peiniau P, Hermier D. Role of hepatic lipogenesis in the susceptibility to fatty liver in the goose (
Anser anser). Comp Biochem Physiol B Biochem Mol Biol 2000;126:81–7.
https://doi.org/10.1016/S0305-0491(00)00171-1
10. Dai QZ, Lin Q, Jiang GT. Phylogenetic studies of four
Anser cygnoides (Anserini: Anserinae) in Hunan province of China based on complete mitochondrial DNA sequences. Mitochondrial DNA A DNA Mapp Seq Anal 2016;27:2464–5.
https://doi.org/10.3109/19401736.2015.1033699
12. Li FN, Duan YH, Li YH, et al. Effects of dietary
n-6:
n-3 PUFA ratio on fatty acid composition, free amino acid profile and gene expression of transporters in finishing pigs. Br J Nutr 2015;113:739–48.
https://doi.org/10.1017/S0007114514004346
13. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2
−ΔΔCt method. Methods 2001;25:402–8.
https://doi.org/10.1006/meth.2001
15. Molee W, Bouillieroudot M, Auvergne A, Babilé R. Changes in lipid composition of hepatocyte plasma membrane induced by overfeeding in duck. Comp Biochem Physiol B, Biochem Mol Biol 2005;141:437–44.
https://doi.org/10.1016/j.cbpc.2005.05.007
16. Cazeils JL, Bouillier-Oudot M, Auvergne A, Candau M, Babile R. Lipid composition of hepatocyte plasma membranes from geese overfed with corn. Lipids 1999;34:937–42.
https://doi.org/10.1007/s11745-999-0443-z
17. Hatsugai K, Ohkohchi N, Fukumori T, Akamatsu Y, Satomi S. Mechanism of primary graft non-function in a rat model for fatty liver transplantation. Transpl Int 2000;13:S583–90.
https://doi.org/10.1007/s001470050408
19. Hermier D, Saadoun A, Salichon MR, Sellier N, Rousselot-Paillet D, Chapman MJ. Plasma lipoproteins and liver lipids in two breeds of geese with different susceptibility to hepatic steatosis: changes induced by development and force-feeding. Lipids 1991;26:331–9.
https://doi.org/10.1007/BF02537194
20. Xu HY, Wang Y, Han CC, et al. Estimation of lipoprotein-lipase activity (LPL) and other biochemical changes in two breeds of overfeeding geese. Asian-Australas J Anim Sci 2010;23:1221–8.
https://doi.org/10.5713/ajas.2010.10013
23. Kobayashi S, Terashima Y, Itoh H. Effects of dietary chitosan on fat deposition and lipase activity in digesta in broiler chickens. Br Poult Sci 2002;43:270–3.
https://doi.org/10.1080/00071660120121490
25. Davail S, Guy G, Andre J, Hermier D, Hoo-Paris R. Metabolism in two breeds of geese with moderate or large overfeeding induced liver-steatosis. Comp Biochem Physiol Part A Mol Integr Physiol 2000;126:91–9.
https://doi.org/10.1016/S1095-6433(00)00190-2
26. André JM, Guy G, Gontierlatonnelle K, et al. Influence of lipoprotein-lipase activity on plasma triacylglycerol concentration and lipid storage in three genotypes of ducks. Comp Biochem Physiol Part A Mol Integr Physiol 2007;148:899–902.
https://doi.org/10.1016/j.cbpa.2007.09.006
29. Burdge GC, Calder PC. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev 2005;45:581–97.
https://doi.org/10.1051/rnd:2005047
31. Molto-Puigmarti C, Plat J, Mensink RP, et al.
FADS1 FADS2 gene variants modify the association between fish intake and the docosahexaenoic acid proportions in human milk. Am J Clin Nutr 2010;91:1368–76.
https://doi.org/10.3945/ajcn.2009.28789
33. Park WJ, Kothapalli KS, Reardon HT, Lawrence P, Qian SB, Thomas Brenna J. A novel
FADS1 isoform potentiates FADS2-mediated production of eicosanoid precursor fatty acids. J Lipid Res 2012;53:1502–12.
https://doi.org/10.1194/jlr.M025312
34. Osman RH, Liu L, Xia LL, et al.
Fads1 and
2 are promoted to meet instant need for long-chain polyunsaturated fatty acids in goose fatty liver. Mol Cell Biochem 2016;418:103–17.
https://doi.org/10.1007/s11010-016-2737-7