2. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in
Caenorhabditis elegans
. Science 2001; 294:858–62.
https://doi.org/10.1126/science.1065062
8. Tesfaye D, Gebremedhn S, Salilew-Wondim D, et al. MicroRNAs: tiny molecules with a significant role in mammalian follicular and oocyte development. Reproduction 2018; 155:R121–35.
https://doi.org/10.1530/REP-17-0428
9. Grosshans H, Johnson T, Reinert KL, Gerstein M, Slack FJ. The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in
C. elegans
. Dev Cell 2005; 8:321–30.
https://doi.org/10.1016/j.devcel.2004.12.019
10. Lockhart J, Canfield J, Mong EF, VanWye J, Totary-Jain H. Nucleotide modification alters microRNA-dependent silencing of microRNA switches. Mol Ther Nucleic Acids 2019; 14:339–50.
https://doi.org/10.1016/j.omtn.2018.12.007
15. Luo M, Li L, Xiao C, Sun Y, Wang GL. Heat stress impairs mice granulosa cell function by diminishing steroids production and inducing apoptosis. Mol Cell Biochem 2016; 412:81–90.
https://doi.org/10.1007/s11010-015-2610-0
17. Sirotkin AV, Laukova M, Ovcharenko D, Brenaut P, Mlyncek M. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol 2010; 223:49–56.
https://doi.org/10.1002/jcp.21999
19. Kitahara Y, Nakamura K, Kogure K, Minegishi T. Role of microRNA-136-3p on the expression of luteinizing hormone-human chorionic gonadotropin receptor mRNA in rat ovaries. Biol Reprod 2013; 89:114
https://doi.org/10.1095/biolreprod.113.109207
21. Sun XF, Li YP, Pan B. Molecular regulation of miR-378 on the development of mouse follicle and the maturation of oocyte
in vivo
. Cell Cycle (Georgetown, Tex) 2018; 17:2230–42.
https://doi.org/10.1080/15384101.2018.1520557
22. Aherne ST, Lao NT. Manipulating miRNA expression to uncover hidden functions. Rani S, editorMicroRNA profiling Methods in Molecular Biology. New York, NY, USA: Humana Press; 2017. 1509:p. 151–60.
https://doi.org/10.1007/978-1-4939-6524-3_14
23. Zhou J, Yao W, Liu K, et al. MicroRNA let-7g regulates mouse granulosa cell autophagy by targeting insulin-like growth factor 1 receptor. Int J Biochem Cell Biol 2016; 78:130–40.
https://doi.org/10.1016/j.biocel.2016.07.008
24. Su JL, Chen PS, Johansson G, Kuo ML. Function and regulation of let-7 family microRNAs. MicroRNA 2012; 1:34–9.
25. Zhou J, Liu J, Pan Z, et al. The let-7g microRNA promotes follicular granulosa cell apoptosis by targeting transforming growth factor-beta type 1 receptor. Mol Cell Endocrinol 2015; 409:103–12.
https://doi.org/10.1016/j.mce.2015.03.012
26. Cao R, Wu WJ, Zhou XL, Xiao P, Wang Y, Liu HL. Expression and preliminary functional profiling of the let-7 family during porcine ovary follicle atresia. Mol Cells 2015; 38:304–11.
https://doi.org/10.14348/molcells.2015.2122
28. Naji M, Aleyasin A, Nekoonam S, Arefian E, Mahdian R. Differential Expression of miR-93 and miR-21 in granulosa cells and follicular fluid of polycystic ovary syndrome associating with different phenotypes. Sci Rep 2017; 7:14671
https://doi.org/10.1038/s41598-017-13250-1
29. Han X, Xue R, Yuan HJ, et al. MicroRNA-21 plays a pivotal role in the oocyte-secreted factor-induced suppression of cumulus cell apoptosis. Biol Reprod 2017; 96:1167–80.
https://doi.org/10.1093/biolre/iox044
30. Fu X, He Y, Wang X, et al. Overexpression of miR-21 in stem cells improves ovarian structure and function in rats with chemotherapy-induced ovarian damage by targeting PDCD4 and PTEN to inhibit granulosa cell apoptosis. Stem Cell Res Therapy 2017; 8:187
https://doi.org/10.1186/s13287-017-0641-z
31. Tscherner A, Brown AC, Stalker L, et al. STAT3 signaling stimulates miR-21 expression in bovine cumulus cells during
in vitro oocyte maturation. Sci Rep 2018; 8:11527
https://doi.org/10.1038/s41598-018-29874-w
33. Li X, Jin Y, Mu Z, Chen W, Jiang S. MicroRNA146a5p enhances cisplatininduced apoptosis in ovarian cancer cells by targeting multiple antiapoptotic genes. Int J Oncol 2017; 51:327–35.
https://doi.org/10.3892/ijo.2017.4023
34. Chen X, Xie M, Liu D, Shi K. Downregulation of microRNA-146a inhibits ovarian granulosa cell apoptosis by simultaneously targeting interleukin-1 receptor-associated kinase and tumor necrosis factor receptor-associated factor 6. Mol Med Rep 2015; 12:5155–62.
https://doi.org/10.3892/mmr.2015.4036
35. Du X, Li Q, Pan Z, Li Q. Androgen receptor and miRNA-126* axis controls follicle-stimulating hormone receptor expression in porcine ovarian granulosa cells. Reproduction 2016; 152:161–9.
https://doi.org/10.1530/REP-15-0517
36. Li D, Xu D, Xu Y, et al. MicroRNA-141-3p targets DAPK1 and inhibits apoptosis in rat ovarian granulosa cells. Cell Biochem Funct 2017; 35:197–201.
https://doi.org/10.1002/cbf.3248
37. Liu J, Du X, Zhou J, Pan Z, Liu H, Li Q. MicroRNA-26b functions as a proapoptotic factor in porcine follicular Granulosa cells by targeting Sma-and Mad-related protein 4. Biol Reprod 2014; 91:146
https://doi.org/10.1095/biolreprod.114.122788
38. Yao YL, Niu JQ, Sizhu SL, et al. microRNA-125b regulates apoptosis by targeting bone morphogenetic protein receptor 1B in yak granulosa cells. DNA Cell Biol 2018; 37:878–87.
http://doi.org/10.1089/dna.2018.4354
39. Zhou J, Lei B, Li H, et al. MicroRNA-144 is regulated by CP2 and decreases COX-2 expression and PGE2 production in mouse ovarian granulosa cells. Cell Death Disease 2017; 8:e2597
https://doi.org/10.1038/cddis.2017.24
40. Liu J, Li X, Yao Y, Li Q, Pan Z, Li Q. miR-1275 controls granulosa cell apoptosis and estradiol synthesis by impairing LRH-1/CYP19A1 axis. Biochim Biophys Acta Gene Regul Mech 2018; 1861:246–57.
https://doi.org/10.1016/j.bbagrm.2018.01.009
41. Ikeda S, Imai H, Yamada M. Apoptosis in cumulus cells during
in vitro maturation of bovine cumulus-enclosed oocytes. Reproduction 2003; 125:369–76.
42. Atwood CS, Vadakkadath Meethal S. The spatiotemporal hormonal orchestration of human folliculogenesis, early embryogenesis and blastocyst implantation. Mol Cell Endocrinol 2016; 430:33–48.
https://doi.org/10.1016/j.mce.2016.03.039
43. Andrei D, Nagy RA, van Montfoort A, et al. Differential miRNA expression profiles in cumulus and mural granulosa cells from human pre-ovulatory follicles. MicroRNA (Shariqah, United Arab Emirates) 2019; 8:61–7.
https://doi.org/10.2174/2211536607666180912152618
44. Chang HM, Qiao J, Leung PC. Oocyte–somatic cell interactions in the human ovary—novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update 2016; 23:1–18.
https://doi.org/10.1093/humupd/dmw039
45. Wigglesworth K, Lee KB, Emori C, Sugiura K, Eppig JJ. Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles. Biol Reprod 2015; 92:23
https://doi.org/10.1095/biolreprod.114.121756
46. Tesfaye D, Worku D, Rings F, et al. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol Reprod Dev 2009; 76:665–77.
https://doi.org/10.1002/mrd.21005
47. Sinha PB, Tesfaye D, Rings F, et al. MicroRNA-130b is involved in bovine granulosa and cumulus cells function, oocyte maturation and blastocyst formation. J Ovarian Res 2017; 10:37
https://doi.org/10.1186/s13048-017-0336-1
50. Jiao J, Shi B, Wang T, et al. Characterization of long non-coding RNA and messenger RNA profiles in follicular fluid from mature and immature ovarian follicles of healthy women and women with polycystic ovary syndrome. Hum Reprod 2018; 33:1735–48.
https://doi.org/10.1093/humrep/dey255
51. Zhang B, Chen L, Feng G, et al. MicroRNA mediating networks in granulosa cells associated with ovarian follicular development. BioMed Res Int 2017; 2017:4585213.
https://doi.org/10.1155/2017/4585213
54. Suh YS, Bhat S, Hong SH, et al. Genome-wide microRNA screening reveals that the evolutionary conserved miR-9a regulates body growth by targeting sNPFR1/NPYR. 2015; 6:7693
https://doi.org/10.1038/ncomms8693
55. Yang S, Wang S, Luo A, et al. Expression patterns and regulatory functions of microRNAs during the initiation of primordial follicle development in the neonatal mouse ovary. Biol Reprod 2013; 89:126
https://doi.org/10.1095/biolreprod.113.107730
56. Donadeu FX, Schauer SN, Sontakke SD. Involvement of miRNAs in ovarian follicular and luteal development. J Endocrinol 2012; 215:323–34.
https://doi.org/10.1530/joe-12-0252
57. Xu S, Linher-Melville K, Yang BB, Wu D, Li J. Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology 2011; 152:3941–51.
https://doi.org/10.1210/en.2011-1147
58. Yang X, Zhou Y, Peng S, et al. Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis. Reproduction 2012; 144:235–44.
https://doi.org/10.1530/REP-11-0371
60. Huang X, Liu C, Hao C, et al. Identification of altered microRNAs and mRNAs in the cumulus cells of PCOS patients: miRNA-509-3p promotes oestradiol secretion by targeting
MAP3K8
. Reproduction 2016; 151:643–55.
https://doi.org/10.1530/REP-16-0071
62. O’Doherty AM, O’Brien YM, Browne JA, Wingfield M, O’Shea LC. Expression of granulosa cell microRNAs, AVEN and ATRX are associated with human blastocyst development. Mol Reprod Dev 2018; 85:836–48.
https://doi.org/10.1002/mrd.22990
63. Lee J, Park H, Eom J, Kang SG. MicroRNA-mediated regulation of the development and functions of follicular helper T cells. Immune Netw 2018; 18:e7
https://doi.org/10.4110/in.2018.18.e7
65. Inoue K, Hirose M, Inoue H, et al. The rodent-specific microRNA cluster within the
Sfmbt2 gene is imprinted and essential for placental development. Cell Rep 2017; 19:949–56.
https://doi.org/10.1016/j.celrep.2017.04.018
66. Schauer SN, Sontakke SD, Watson ED, Esteves CL, Donadeu FX. Involvement of miRNAs in equine follicle development. Reproduction 2013; 146:273–82.
https://doi.org/10.1530/REP-13-0107
68. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol 2019; 234:5451–65.
https://doi.org/10.1002/jcp.27486
70. Wang J, Xu B, Tian GG, Sun T, Wu J. Ablation of the MiR-17-92 MicroRNA cluster in germ cells causes subfertility in female mice. Cell Physiol Biochem 2018; 45:491–504.
https://doi.org/10.1159/000487028
71. Andreas E, Hoelker M, Neuhoff C, et al.
MicroRNA 17–92 cluster regulates proliferation and differentiation of bovine granulosa cells by targeting
PTEN and
BMPR2 genes. Cell Tissue Res 2016; 366:219–30.
https://doi.org/10.1007/s00441-016-2425-7
72. Li P, Sheng C, Huang L, et al. MiR-183/-96/-182 cluster is up-regulated in most breast cancers and increases cell proliferation and migration. Breast Cancer Res 2014; 16:473
https://doi.org/10.1186/s13058-014-0473-z
73. Gebremedhn S, Salilew-Wondim D, Hoelker M, et al. MicroRNA-183-96-182 cluster regulates bovine granulosa cell proliferation and cell cycle transition by coordinately targeting
FOXO1
. Biol Reprod 2016; 94:127
https://doi.org/10.1095/biolreprod.115.137539
74. Herndon MK, Law NC, Donaubauer EM, Kyriss B, Hunzicker-Dunn M. Forkhead box O member FOXO1 regulates the majority of follicle-stimulating hormone responsive genes in ovarian granulosa cells. Mol Cell Endocrinol 2016; 434:116–26.
75. Askandar Iqbal M, Arora S, Prakasam G, Calin GA, Syed MA. MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance. Mol Aspects Med 2019; 70:3–20.
https://doi.org/10.1016/j.mam.2018.07.003
76. Shippy DC, Bearson BL, Cai G, Brunelle BW, Kich JD, Bearson SMD. Modulation of porcine microRNAs associated with apoptosis and NF-kappaB signaling pathways in response to
Salmonella enterica serovar Typhimurium. Gene 2018; 676:290–7.
https://doi.org/10.1016/j.gene.2018.08.044
79. Silveira Zavalhia L, Weber Medeiros A, Oliveira Silva A, Vial Roehe A. Do
FHIT gene alterations play a role in human solid tumors? 2018; 14:e214–23.
https://doi.org/10.1111/ajco.12868
82. Shi L, Liu S, Zhao W, Shi J. miR-483-5p and miR-486-5p are down-regulated in cumulus cells of metaphase II oocytes from women with polycystic ovary syndrome. Reprod Biomed Online 2015; 31:565–72.
https://doi.org/10.1016/j.rbmo.2015.06.023
85. Li Y, Ganta S, Cheng C, Craig R, Ganta RR, Freeman LC. FSH stimulates ovarian cancer cell growth by action on growth factor variant receptor. Mol Cell Endocrinol 2007; 267:26–37.
https://doi.org/10.1016/j.mce.2006.11.010
86. Xiong F, Hu L, Zhang Y, Xiao X, Xiao J. miR-22 inhibits mouse ovarian granulosa cell apoptosis by targeting SIRT1. Biol Open 2016; 5:367–71.
https://doi.org/10.1242/bio.016907
88. Rios C, Warren D, Olson B, Abbott AL. Functional analysis of microRNA pathway genes in the somatic gonad and germ cells during ovulation in
C. elegans
. Dev Biol 2017; 426:115–25.
https://doi.org/10.1016/j.ydbio.2017.04.007