2. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in
Caenorhabditis elegans
. Science 2001;294:858–62.
https://doi.org/10.1126/science.1065062
8. Tesfaye D, Gebremedhn S, Salilew-Wondim D, et al. MicroRNAs: tiny molecules with a significant role in mammalian follicular and oocyte development. Reproduction 2018;155:R121–35.
https://doi.org/10.1530/REP-17-0428
9. Grosshans H, Johnson T, Reinert KL, Gerstein M, Slack FJ. The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in
C. elegans
. Dev Cell 2005;8:321–30.
https://doi.org/10.1016/j.devcel.2004.12.019
10. Lockhart J, Canfield J, Mong EF, VanWye J, Totary-Jain H. Nucleotide modification alters microRNA-dependent silencing of microRNA switches. Mol Ther Nucleic Acids 2019;14:339–50.
https://doi.org/10.1016/j.omtn.2018.12.007
17. Sirotkin AV, Laukova M, Ovcharenko D, Brenaut P, Mlyncek M. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol 2010;223:49–56.
https://doi.org/10.1002/jcp.21999
19. Kitahara Y, Nakamura K, Kogure K, Minegishi T. Role of microRNA-136-3p on the expression of luteinizing hormone-human chorionic gonadotropin receptor mRNA in rat ovaries. Biol Reprod 2013;89:114.
https://doi.org/10.1095/biolreprod.113.109207
21. Sun XF, Li YP, Pan B. Molecular regulation of miR-378 on the development of mouse follicle and the maturation of oocyte
in vivo
. Cell Cycle (Georgetown, Tex) 2018;17:2230–42.
https://doi.org/10.1080/15384101.2018.1520557
22. Aherne ST, Lao NT. Manipulating miRNA expression to uncover hidden functions. Rani S, editorMicroRNA profiling Methods in Molecular Biology. New York, NY, USA: Humana Press; 2017. 1509:p. 151–60.
https://doi.org/10.1007/978-1-4939-6524-3_14
23. Zhou J, Yao W, Liu K, et al. MicroRNA let-7g regulates mouse granulosa cell autophagy by targeting insulin-like growth factor 1 receptor. Int J Biochem Cell Biol 2016;78:130–40.
https://doi.org/10.1016/j.biocel.2016.07.008
24. Su JL, Chen PS, Johansson G, Kuo ML. Function and regulation of let-7 family microRNAs. MicroRNA 2012;1:34–9.
25. Zhou J, Liu J, Pan Z, et al. The let-7g microRNA promotes follicular granulosa cell apoptosis by targeting transforming growth factor-beta type 1 receptor. Mol Cell Endocrinol 2015;409:103–12.
https://doi.org/10.1016/j.mce.2015.03.012
30. Fu X, He Y, Wang X, et al. Overexpression of miR-21 in stem cells improves ovarian structure and function in rats with chemotherapy-induced ovarian damage by targeting PDCD4 and PTEN to inhibit granulosa cell apoptosis. Stem Cell Res Therapy 2017;8:187.
https://doi.org/10.1186/s13287-017-0641-z
31. Tscherner A, Brown AC, Stalker L, et al. STAT3 signaling stimulates miR-21 expression in bovine cumulus cells during
in vitro oocyte maturation. Sci Rep 2018;8:11527.
https://doi.org/10.1038/s41598-018-29874-w
33. Li X, Jin Y, Mu Z, Chen W, Jiang S. MicroRNA146a5p enhances cisplatininduced apoptosis in ovarian cancer cells by targeting multiple antiapoptotic genes. Int J Oncol 2017;51:327–35.
https://doi.org/10.3892/ijo.2017.4023
34. Chen X, Xie M, Liu D, Shi K. Downregulation of microRNA-146a inhibits ovarian granulosa cell apoptosis by simultaneously targeting interleukin-1 receptor-associated kinase and tumor necrosis factor receptor-associated factor 6. Mol Med Rep 2015;12:5155–62.
https://doi.org/10.3892/mmr.2015.4036
35. Du X, Li Q, Pan Z, Li Q. Androgen receptor and miRNA-126* axis controls follicle-stimulating hormone receptor expression in porcine ovarian granulosa cells. Reproduction 2016;152:161–9.
https://doi.org/10.1530/REP-15-0517
36. Li D, Xu D, Xu Y, et al. MicroRNA-141-3p targets DAPK1 and inhibits apoptosis in rat ovarian granulosa cells. Cell Biochem Funct 2017;35:197–201.
https://doi.org/10.1002/cbf.3248
37. Liu J, Du X, Zhou J, Pan Z, Liu H, Li Q. MicroRNA-26b functions as a proapoptotic factor in porcine follicular Granulosa cells by targeting Sma-and Mad-related protein 4. Biol Reprod 2014;91:146.
https://doi.org/10.1095/biolreprod.114.122788
38. Yao YL, Niu JQ, Sizhu SL, et al. microRNA-125b regulates apoptosis by targeting bone morphogenetic protein receptor 1B in yak granulosa cells. DNA Cell Biol 2018;37:878–87.
http://doi.org/10.1089/dna.2018.4354
40. Liu J, Li X, Yao Y, Li Q, Pan Z, Li Q. miR-1275 controls granulosa cell apoptosis and estradiol synthesis by impairing LRH-1/CYP19A1 axis. Biochim Biophys Acta Gene Regul Mech 2018;1861:246–57.
https://doi.org/10.1016/j.bbagrm.2018.01.009
41. Ikeda S, Imai H, Yamada M. Apoptosis in cumulus cells during
in vitro maturation of bovine cumulus-enclosed oocytes. Reproduction 2003;125:369–76.
42. Atwood CS, Vadakkadath Meethal S. The spatiotemporal hormonal orchestration of human folliculogenesis, early embryogenesis and blastocyst implantation. Mol Cell Endocrinol 2016;430:33–48.
https://doi.org/10.1016/j.mce.2016.03.039
45. Wigglesworth K, Lee KB, Emori C, Sugiura K, Eppig JJ. Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles. Biol Reprod 2015;92:23.
https://doi.org/10.1095/biolreprod.114.121756
46. Tesfaye D, Worku D, Rings F, et al. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol Reprod Dev 2009;76:665–77.
https://doi.org/10.1002/mrd.21005
51. Zhang B, Chen L, Feng G, et al. MicroRNA mediating networks in granulosa cells associated with ovarian follicular development. BioMed Res Int 2017;2017:4585213.
https://doi.org/10.1155/2017/4585213
55. Yang S, Wang S, Luo A, et al. Expression patterns and regulatory functions of microRNAs during the initiation of primordial follicle development in the neonatal mouse ovary. Biol Reprod 2013;89:126.
https://doi.org/10.1095/biolreprod.113.107730
58. Yang X, Zhou Y, Peng S, et al. Differentially expressed plasma microRNAs in premature ovarian failure patients and the potential regulatory function of mir-23a in granulosa cell apoptosis. Reproduction 2012;144:235–44.
https://doi.org/10.1530/REP-11-0371
60. Huang X, Liu C, Hao C, et al. Identification of altered microRNAs and mRNAs in the cumulus cells of PCOS patients: miRNA-509-3p promotes oestradiol secretion by targeting
MAP3K8
. Reproduction 2016;151:643–55.
https://doi.org/10.1530/REP-16-0071
62. O’Doherty AM, O’Brien YM, Browne JA, Wingfield M, O’Shea LC. Expression of granulosa cell microRNAs, AVEN and ATRX are associated with human blastocyst development. Mol Reprod Dev 2018;85:836–48.
https://doi.org/10.1002/mrd.22990
65. Inoue K, Hirose M, Inoue H, et al. The rodent-specific microRNA cluster within the
Sfmbt2 gene is imprinted and essential for placental development. Cell Rep 2017;19:949–56.
https://doi.org/10.1016/j.celrep.2017.04.018
66. Schauer SN, Sontakke SD, Watson ED, Esteves CL, Donadeu FX. Involvement of miRNAs in equine follicle development. Reproduction 2013;146:273–82.
https://doi.org/10.1530/REP-13-0107
68. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol 2019;234:5451–65.
https://doi.org/10.1002/jcp.27486
70. Wang J, Xu B, Tian GG, Sun T, Wu J. Ablation of the MiR-17-92 MicroRNA cluster in germ cells causes subfertility in female mice. Cell Physiol Biochem 2018;45:491–504.
https://doi.org/10.1159/000487028
71. Andreas E, Hoelker M, Neuhoff C, et al.
MicroRNA 17–92 cluster regulates proliferation and differentiation of bovine granulosa cells by targeting
PTEN and
BMPR2 genes. Cell Tissue Res 2016;366:219–30.
https://doi.org/10.1007/s00441-016-2425-7
73. Gebremedhn S, Salilew-Wondim D, Hoelker M, et al. MicroRNA-183-96-182 cluster regulates bovine granulosa cell proliferation and cell cycle transition by coordinately targeting
FOXO1
. Biol Reprod 2016;94:127.
https://doi.org/10.1095/biolreprod.115.137539
75. Askandar Iqbal M, Arora S, Prakasam G, Calin GA, Syed MA. MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance. Mol Aspects Med 2019;70:3–20.
https://doi.org/10.1016/j.mam.2018.07.003
76. Shippy DC, Bearson BL, Cai G, Brunelle BW, Kich JD, Bearson SMD. Modulation of porcine microRNAs associated with apoptosis and NF-kappaB signaling pathways in response to
Salmonella enterica serovar Typhimurium. Gene 2018;676:290–7.
https://doi.org/10.1016/j.gene.2018.08.044
79. Silveira Zavalhia L, Weber Medeiros A, Oliveira Silva A, Vial Roehe A. Do
FHIT gene alterations play a role in human solid tumors? 2018;14:e214–23.
https://doi.org/10.1111/ajco.12868
82. Shi L, Liu S, Zhao W, Shi J. miR-483-5p and miR-486-5p are down-regulated in cumulus cells of metaphase II oocytes from women with polycystic ovary syndrome. Reprod Biomed Online 2015;31:565–72.
https://doi.org/10.1016/j.rbmo.2015.06.023
88. Rios C, Warren D, Olson B, Abbott AL. Functional analysis of microRNA pathway genes in the somatic gonad and germ cells during ovulation in
C. elegans
. Dev Biol 2017;426:115–25.
https://doi.org/10.1016/j.ydbio.2017.04.007