1. Bardelli S, Moccetti M. Stem Cell banking and its impact on cardiac regenerative medicine. Adv Exp Med Biol 2016;951:163–78.
2. Hilkens P, Driesen RB, Wolfs E, et al. Cryopreservation and banking of dental stem cells. Adv Exp Med Biol 2016;951:199– 235.
5. Stacey G. Banking stem cells for research and clinical applications. Prog Brain Res 2012;200:41–58.
6. Sun C, Yue J, He N, et al. Fundamental principles of stem cell banking. Adv Exp Med Biol 2016;951:31–45.
7. Murphy A, McKenna D, McCullough J. Cord blood banking and quality issues. Transfusion 2016;56:645–52.
8. Vaidya A, Singhania S. Quality control measures in cord blood banking in India - critical appraisal and recommendations. J Stem Cells 2013;8:105–13.
9. Diaferia GR, Cardano M, Cattaneo M, et al. The science of stem cell biobanking: investing in the future. J Cell Physiol 2012;227:14–9.
10. Kim GA, Lee ST, Ahn JY, Park JH, Lim JM. Improved viability of freeze-thawed embryonic stem cells after exposure to glutathione. Fertil Steril 2010;94:2409–12.
11. International Stem Cell Banking I. Consensus guidance for banking and supply of human embryonic stem cell lines for research purposes. Stem Cell Rev 2009;5:301–14.
12. Ilic D, Ogilvie C. Human embryonic stem cells-what have we done? What are we doing? Where are we going? Stem Cells 2017;35:17–25.
13. Kadota S, Aiba K, Nakatsuji N. Embryonic stem cell research. Nihon Rinsho 2011;69:2109–13.
14. Nakamura Y. Bio-resource of human and animal-derived cell materials. Exp Anim 2010;59:1–7.
15. Healy LE, Ludwig TE, Choo A. International banking: checks, deposits, and withdrawals. Cell Stem Cell 2008;2:305–6.
17. Morgenstern DA, Ahsan G, Brocklesby M, et al. Post-thaw viability of cryopreserved peripheral blood stem cells (PBSC) does not guarantee functional activity: important implications for quality assurance of stem cell transplant programmes. Br J Haematol 2016;174:942–51.
18. Smagur A, Mitrus I, Giebel S, et al. Impact of different dimethyl sulphoxide concentrations on cell recovery, viability and clonogenic potential of cryopreserved peripheral blood hematopoietic stem and progenitor cells. Vox Sang 2013;104:240–7.
19. Woods EJ, Thirumala S, Badhe-Buchanan SS, Clarke D, Mathew AJ. Off the shelf cellular therapeutics: Factors to consider during cryopreservation and storage of human cells for clinical use. Cytotherapy 2016;18:697–711.
20. Pal R, Totey S, Mamidi MK, Bhat VS, Totey S. Propensity of human embryonic stem cell lines during early stage of lineage specification controls their terminal differentiation into mature cell types. Exp Biol Med (Maywood) 2009;234:1230–43.
27. Sart S, Ma T, Li Y. Cryopreservation of pluripotent stem cell aggregates in defined protein-free formulation. Biotechnol Prog 2013;29:143–53.
28. Kim GA, Kim HY, Kim JW, et al. Ultrastructural deformity of ovarian follicles induced by different cryopreservation protocols. Fertil Steril 2010;94:1548–50.e1.
29. Wagh V, Meganathan K, Jagtap S, et al. Effects of cryopreservation on the transcriptome of human embryonic stem cells after thawing and culturing. Stem Cell Rev 2011;7:506–17.
30. Li XY, Jia Q, Di KQ, et al. Passage number affects the pluripotency of mouse embryonic stem cells as judged by tetraploid embryo aggregation. Cell Tissue Res 2007;327:607–14.