1. Vansickle J. Survey shows lower incidence of PSE. National Hog Farmer 2006;51:42.
2. Ludvigsen J. Muscular degeneration in pigs. In : 15th International Veterinary Congress; 1953 Aug 9–15; Stockholm, Sweden.
3. Briskey EJ. Etiological status and associated studies of pale, soft, exudative porcine musculature. Adv Food Res 1964;13:89–178.
4. Leheska JM, Wulf DM, Maddock RJ. Effects of fasting and transportation on pork quality development and extent of postmortem metabolism. J Anim Sci 2002;80:3194–202.
5. Rosenvold K, Andersen HJ. Factors of significance for pork quality-a review. Meat Sci 2003;64:219–37.
6. Sellier P, Monin G. Genetics of pig meat quality: a review. J Muscle Foods 1994;5:187–219.
7. Shen QW, Du M. Role of AMP-activated protein kinase in the glycolysis of postmortem muscle. J Sci Food Agric 2005;85:2401–6.
8. Shen QW, Gerrard DE, Du M. Compound C, an inhibitor of AMP-activated protein kinase, inhibits glycolysis in mouse longissimus dorsi postmortem. Meat Sci 2008;78:323–30.
9. Liang J, Yang Q, Zhu MJ, Jin Y, Du M. AMP-activated protein kinase (AMPK) alpha2 subunit mediates glycolysis in postmortem skeletal muscle. Meat Sci 2013;95:536–41.
16. McGee SL, van Denderen BJ, Howlett KF, et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 2008;57:860–7.
17. Shen QW, Means WJ, Underwood KR, et al. Early post-mortem AMP-activated protein kinase (AMPK) activation leads to phosphofructokinase-2 and -1 (PFK-2 and PFK-1) phosphorylation and the development of pale, soft, and exudative (PSE) conditions in porcine longissimus muscle. J Agric Food Chem 2006;54:5583–9.
18. Monin G, Sellier P. Pork of low technological quality with a normal rate of muscle pH fall in the immediate post-mortem period: The case of the Hampshire breed. Meat Sci 1985;13:49–63.
19. Scheffler TL, Gerrard DE. Mechanisms controlling pork quality development: The biochemistry controlling postmortem energy metabolism. Meat Sci 2007;77:7–16.
20. Du M, Shen QW, Zhu MJ. Role of beta-adrenoceptor signaling and AMP-activated protein kinase in glycolysis of postmortem skeletal muscle. J Agric Food Chem 2005;53:3235–9.
22. Marsin AS, Bertrand L, Rider MH, et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 2000;10:1247–55.
23. Shen QW, Means WJ, Thompson SA, et al. Pre-slaughter transport, AMP-activated protein kinase, glycolysis, and quality of pork loin. Meat Sci 2006;74:388–95.
24. Shen QW, Underwood KR, Means WJ, McCormick RJ, Du M. The halothane gene, energy metabolism, adenosine monophosphate-activated protein kinase, and glycolysis in postmortem pig longissimus dorsi muscle. J Anim Sci 2007;85:1054–61.
25. Schwagele F, Buesa PL, Honikel KO. Enzymological investigations on the causes for the PSE-syndrome, II. Comparative studies on glycogen phosphorylase from pig muscles. Meat Sci 1996;44:41–53.
26. Li Z, Li X, Wang Z, Shen QW, Zhang D. Antemortem stress regulates protein acetylation and glycolysis in postmortem muscle. Food Chem 2016;202:94–8.
27. Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem 2004;73:417–35.