INTRODUCTION
MATERIALS AND METHODS
Data
Methods
LASSO (Tibshirani, 1996)
Fused LASSO (Tibshirani et al., 2005)
Elastic net (Zou and Hastie, 2005)
Comparing methods
Partition the data into the first-deep training and validation sets; then partition the first-deep training set into the second-deep training and test set (two-deep CV).
At the second-deep, construct the model using the sub-training set and calculate CV; then choose the optimal tuning parameter that minimizes CV.
At the first-deep, fit the model and estimate the coefficients in the first-deep training set with the estimated regularization parameter from the second-deep set.
RESULT AND DISCUSSION
Table 1
Table 2
Fold | Regularized regression | ||
---|---|---|---|
|
|||
LASSO | Fused LASSO | Elastic net | |
1 | 0.3627 | 0.4150 | 0.3972 |
2 | 0.6802 | 0.6978 | 0.6966 |
3 | 0.6136 | 0.6410 | 0.6239 |
4 | 0.5600 | 0.5848 | 0.5694 |
5 | 0.7295 | 0.7510 | 0.7338 |
6 | 0.5973 | 0.6265 | 0.6011 |
7 | 0.4849 | 0.5126 | 0.4925 |
8 | 0.5931 | 0.6070 | 0.5962 |
9 | 0.5200 | 0.5422 | 0.5291 |
10 | 0.5708 | 0.5891 | 0.5777 |
Ave corr1 | 0.5712 | 0.5967 | 0.5818 |
Table 3
Table 4
Name of SNP | Coef2 |
---|---|
M1GA0023299 | 0.0099 |
MARC0015851 | 0.0094 |
H3GA0002658 | 0.0084 |
ASGA0001125 | 0.0074 |
ALGA0106999 | 0.0069 |
MARC0016306 | 0.0068 |
ASGA0080059 | 0.0064 |
ASGA0054467 | −0.0063 |
MARC0027886 | −0.0064 |
MARC0023564 | −0.0064 |