Go to Top Go to Bottom
Animal Breeding and Genetics
Asian-Australasian Journal of Animal Sciences 2003;16(8): 1143-1150.
https://doi.org/10.5713/ajas.2003.1143    Published online January 1, 2003.
Methane Production Potential of Feed Ingredients as Measured by In Vitro Gas Test
H. J. Lee, S. C. Lee, J. D. Kim, Y. G. Oh, B. K. Kim, C. W. Kim, K. J. Kim
This study was conducted to investigate in vitro methane production of feed ingredients and relationship between the content of crude nutrients and methane production. Feed ingredients (total 26) were grouped as grains (5 ingredients), brans and hulls (8), oil seed meals (9) roughages (3), and animal by-product (1) from their nutrient composition and their methane production protential were measured by in vitro gas test. Among the groups, the in vitro methane productions for both 6 and 24 h incubation were highest in grains, followed by brans and hulls, oil meals and roughages, animal byproducts. Within the group of grains, methane production from wheat flour was the highest, followed by wheat, corn, tapioca, and then oat. Within the brans and hulls, soybean hull showed the highest methane production and cotton seed hull, the lowest. Methane production from oil meals was lower compared with grains and brans and hulls, and in decreasing order production from canola meal was followed by soybean meal, coconut meal, and corn germ meal (p<0.01). Three ingredients were selected and the interactions among feed ingredients were evaluated for methane production. Correlation coefficient between measured and estimated values of the combinations were 0.91. Methane production from each feed ingredient was decreased with increasing amount of crude fiber (CF), protein (CP) and ether extract (EE), whereas positive relationship was noted with the concentrations of N-free extract (NFE). The multiple regression equation (n=134) for methane production and nutrient concentrations was as follows. Methane production (ml/0.2 g DM)=(0.032횞CP)-(0.057횞EE)-(0.012횞CF)+(0.124횞NFE) (p<0.01; R2=0.929). Positive relationship was noted for CP and NFE and negative relationship for CF and EE. It seems possible to predict methane production potential from nutritional composition of the ingredients for their effective application on formulating less methane emitting rations.
Keywords: Methane Production; Feed Ingredients; In vitro Gas Test

Editorial Office
Asian-Australasian Association of Animal Production Societies(AAAP)
Room 708 Sammo Sporex, 23, Sillim-ro 59-gil, Gwanak-gu, Seoul 08776, Korea   
TEL : +82-2-888-6558    FAX : +82-2-888-6559   
E-mail : editor@animbiosci.org               

Copyright © 2024 by Asian-Australasian Association of Animal Production Societies.

Developed in M2PI

Close layer
prev next