1. De Boevre M, Di Mavungu JD, Landschoot S, et al. Natural occurrence of mycotoxins and their masked forms in food and feed products. World Mycotoxin J 2012; 5:207–19.
https://doi.org/10.3920/WMJ2012.1410
3. Price WD, Lovell RA, McChesney DG. Naturally occurring toxins in feedstuffs: center for veterinary medicine perspective. J Anim Sci 1993; 71:2556–62.
https://doi.org/10.2527/1993.7192556x
4. Zinedine A, Soriano JM, Molto JC, Manes J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 2007; 45:1–18.
https://doi.org/10.1016/j.fct.2006.07.030
5. Takemura H, Shim JY, Sayama K, Tsubura A, Zhu BT, Shimoi K. Characterization of the estrogenic activities of zearalenone and zeranol
in vivo and
in vitro
. J Steroid Biochem Mol Biol 2007; 103:170–7.
https://doi.org/10.1016/j.jsbmb.2006.08.008
6. Wielogórska E, Elliott CT, Danaher M, Connolly L. Validation and application of a reporter gene assay for the determination of estrogenic endocrine disruptor activity in milk. Food Chem Toxicol 2014; 69:260–6.
https://doi.org/10.1016/j.fct.2014.04.028
9. Yang LJ, Zhou M, Huang LB, et al. Zearalenone-promoted follicle growth through modulation of Wnt-1/β-catenin signaling pathway and expression of estrogen receptor genes in ovaries of postweaning piglets. J Agric Food Chem 2018; 66:7899–906.
https://doi.org/10.1021/acs.jafc.8b02101
10. Reddy KE, Kim M, Kim KH, Ji SY, Lee SD. Effect of commercially purified deoxynivalenol and zearalenone mycotoxins on microbial diversity of pig cecum contents. Anim Biosci 2021; 34:243–55.
https://doi.org/10.5713/ajas.20.0137
11. Li Y, Zhang B, Huang K, et al. Mitochondrial proteomic analysis reveals the molecular mechanisms underlying reproductive toxicity of zearalenone in MLTC-1 cells. Toxicology 2014; 324:55–67.
https://doi.org/10.1016/j.tox.2014.07.007
13. Gajęcka M, Rybarczyk L, Jakimiuk E, et al. The effect of experimental long-term exposure to low-dose zearalenone on uterine histology in sexually immature gilts. Exp Toxicol Pathol 2012; 64:537–42.
https://doi.org/10.1016/j.etp.2010.11.009
15. Biehl ML, Prelusky DB, Koritz GD, Hartin KE, Buck WB, Trenholm HL. Biliary excretion and enterohepatic cycling of zearalenone in immature pigs. Toxicol Appl Pharmacol 1993; 121:152–9.
https://doi.org/10.1006/taap.1993.1140
18. Przybylska-Gornowicz B, Lewczuk B, Prusik M, et al. The effects of deoxynivalenol and zearalenone on the pig large intestine. A light and electron microscopy study. Toxins 2018; 10:148
https://doi.org/10.3390/toxins10040148
19. Przybylska-Gornowicz B, Tarasiuk M, Lewczuk B, et al. The effects of low doses of two
Fusarium toxins, zearalenone and deoxynivalenol, on the pig jejunum. A light and electron microscopic study. Toxins 2015; 7:4684–705.
https://doi.org/10.3390/toxins7114684
21. Xiao D, Yuan D, Tan B, Wang J, Liu Y, Tan B. The role of Nrf2 signaling pathway in
Eucommia ulmoides flavones regulating oxidative stress in the intestine of piglets. Oxid Med Cell Longev 2019; 2019:9719618
https://doi.org/10.1155/2019/9719618
23. Jiang SZ, Yang ZB, Yang WR, et al. Effects of purified zearalenone on growth performance, organ size, serum metabolites, and oxidative stress in postweaning gilts. J Anim Sci 2011; 89:3008–15.
https://doi.org/10.2527/jas.2010-3658
24. Jiang SZ, Yang ZB, Yang WR, et al. Effects of feeding purified zearalenone contaminated diets with or without clay enterosorbent on growth, nutrient availability, and genital organs in post-weaning female pigs. Asian-Australas J Anim Sci 2010; 23:74–81.
https://doi.org/10.5713/ajas.2010.90242
25. Yang L, Wang S, Yang WR, et al. Effects of zearalenone on production performance, serum antioxidant capacity and immune function of weaning gilts. Chin J Anim Nutr 2017; 29:2843–50.
26. Committee on Nutrient Requirements of Swine, National Research Council. Nutrient requirements of swine. 11th edWashington, DC, USA: National Academies Press; 2012.
27. Latimer GW. AOAC International Official methods of analysis of AOAC International. Gaithersburg, MD, USA: AOAC International; 2012.
28. Jiang SZ, Yang ZB, Yang WR, et al. Effect on hepatonephric organs, serum metabolites and oxidative stress in post-weaning piglets fed purified zearalenone-contaminated diets with or without Calibrin-Z. J Anim Physiol Anim Nutr 2012; 96:1147–56.
https://doi.org/10.1111/j.1439-0396.2011.01233.x
29. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248–54.
https://doi.org/10.1016/0003-2697(76)90527-3
30. Zhou M, Yang L, Shao M, et al. Effects of zearalenone exposure on the TGF-β1/Smad3 signaling pathway and the expression of proliferation or apoptosis related genes of post-weaning gilts. Toxins 2018; 10:49
https://doi.org/10.3390/toxins10020049
31. Rivera A, Agnati LF, Horvath TL, Valderrama JJ, de La Calle A, Fuxe K. Uncoupling protein 2/3 immunoreactivity and the ascending dopaminergic and noradrenergic neuronal systems: relevance for volume transmission. Neuroscience 2006; 137:1447–61.
https://doi.org/10.1016/j.neuroscience.2005.05.051
32. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2
−
ΔΔ
CT method. Methods 2001; 25:402–8.
https://doi.org/10.1006/meth.2001.1262
33. Tatay E, Espín S, García-Fernández AJ, Ruiz MJ. Oxidative damage and disturbance of antioxidant capacity by zearalenone and its metabolites in human cells. Toxicol
In Vitro
2017; 45:334–9.
https://doi.org/10.1016/j.tiv.2017.04.026
35. Bouaziz C, Sharaf el dein O, El Golli E, et al. Different apoptotic pathways induced by zearalenone, T-2 toxin and ochratoxin A in human hepatoma cells. Toxicology 2008; 254:19–28.
https://doi.org/10.1016/j.tox.2008.08.020
36. Kouadio JH, Dano SD, Moukha S, Mobio TA, Creppy EE. Effects of combinations of
Fusarium mycotoxins on the inhibition of macromolecular synthesis, malondialdehyde levels, DNA methylation and fragmentation, and viability in Caco-2 cells. Toxicon 2007; 49:306–17.
https://doi.org/10.1016/j.toxicon.2006.09.029
37. Ren ZH, Deng HD, Wang YC, et al. The
Fusarium toxin zearalenone and deoxynivalenol affect murine splenic antioxidant functions, interferon levels, and T-cell subsets. Environ Toxicol Pharmacol 2016; 41:195–200.
https://doi.org/10.1016/j.etap.2015.12.007
38. Ren Z, Wang Y, Deng H, et al. Deoxynivalenol induces apoptosis in chicken splenic lymphocytes via the reactive oxygen species-mediated mitochondrial pathway. Environ Toxicol Pharmacol 2015; 39:339–46.
https://doi.org/10.1016/j.etap.2014.11.028
39. Shi B, Su Y, Chang S, Sun Y, Meng X, Shan A. Vitamin C protects piglet liver against zearalenone-induced oxidative stress by modulating expression of nuclear receptors PXR and CAR and their target genes. Food Funct 2017; 8:3675–87.
https://doi.org/10.1039/C7FO01301A
40. Cheng Q, Jiang S, Huang L, et al. Effects of zearalenone-induced oxidative stress and Keap1–Nrf2 signaling pathway-related gene expression in the ileum and mesenteric lymph nodes of post-weaning gilts. Toxicology 2020; 429:152337
https://doi.org/10.1016/j.tox.2019.152337
43. Mine Y, Young D, Yang C. Antioxidative stress effect of phosphoserine dimers is mediated via activation of the Nrf2 signaling pathway. Mol Nutr Food Res 2015; 59:303–14.
https://doi.org/10.1002/mnfr.201400381
46. Shanmugam G, Challa AK, Litovsky SH, et al. Enhanced Keap1-Nrf2 signaling protects the myocardium from isoproterenol-induced pathological remodeling in mice. Redox Biol 2019; 27:101212
https://doi.org/10.1016/j.redox.2019.101212