2. Hogeveen H, Steeneveld W, Wolf CA. Production diseases reduce the efficiency of dairy production: A review of the results, methods, and approaches regarding the economics of mastitis. Annu Rev Resour Economics 2019;11:289–312.
https://doi.org/10.1146/annurev-resource-100518-093954
4. Khan M, Khan A. Basic facts of mastitis in dairy animals: a review. Pak Vet J 2006;26:204–8.
5. Kibebew K. Bovine mastitis: A review of causes and epidemiological point of view. J Biol Agric Healthc 2017;7:1–14.
15. Bogni C, Odierno L, Raspanti C, et al. War against mastitis: current concepts on controlling bovine mastitis pathogens. Méndez-Vilas A, editorScience against microbial pathogens: communicafing current research and technological advances. Badajoz, Spain: Formatex Research Center; 2011. p. 483–94.
16. Vasudevan P, Nair MKM, Annamalai T, Venkitanarayanan KS. Phenotypic and genotypic characterization of bovine mastitis isolates of
Staphylococcus aureus for biofilm formation. Vet Microbiol 2003;92:179–85.
https://doi.org/10.1016/S0378-1135(02)00360-7
17. Rainard P, Foucras G, Fitzgerald JR, et al. Knowledge gaps and research priorities in
Staphylococcus aureus mastitis control. Transbound Emerg Dis 2018;65:Suppl 1149–65.
https://doi.org/10.1111/tbed.12698
18. Gilbert FB, Cunha P, Jensen K, et al. Differential response of bovine mammary epithelial cells to
Staphylococcus aureus or
Escherichia coli agonists of the innate immune system. Vet Res 2013;44:40.
https://doi.org/10.1186/1297-9716-44-40
20. Oliveira M, Bexiga R, Nunes SF, Vilela CL. Invasive potential of biofilm-forming
Staphylococci bovine subclinical mastitis isolates. J Vet Sci 2011;12:95–7.
https://doi.org/10.4142/jvs.2011.12.1.95
26. Amini B, Baghchesaraie H, Faghihi MHO. Effect of different sub MIC concentrations of penicillin, vancomycin and ceftazidime on morphology and some biochemical properties of Staphylococcus aureus and Pseudomonas aeruginosa isolates. Iranian J Microbiol 2009;1:43–7.
27. Asli A, Brouillette E, Ster C, et al. Antibiofilm and antibacterial effects of specific chitosan molecules on
Staphylococcus aureus isolates associated with bovine mastitis. PloS One 2017;12:e0176988.
https://doi.org/10.1371/journal.pone.0176988
29. Rosini R, Margarit I. Biofilm formation by
Streptococcus agalactiae: influence of environmental conditions and implicated virulence factors. Front Cell Infect Microbiol 2015;5:6.
http://doi.org/10.3389/fcimb.2015.00006
30. McAuliffe L, Ellis RJ, Miles K, Ayling RD, Nicholas RA. Biofilm formation by mycoplasma species and its role in environmental persistence and survival. Microbiology 2006;152:913–22.
http://doi.org/10.1099/mic.0.28604-0
32. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999;274:10689–92.
http://doi.org/10.1074/jbc.274.16.10689
33. Burvenich C, Van Merris V, Mehrzad J, Diez-Fraile A, Duchateau L. Severity of
E. coli mastitis is mainly determined by cow factors. Vet Res 2003;34:521–64.
http://doi.org/10.1051/vetres:2003023
36. Ezzat Alnakip M, Quintela-Baluja M, Böhme K, et al. The immunology of mammary gland of dairy ruminants between healthy and inflammatory conditions. J Vet Med 2014;2014:659801.
https://doi.org/10.1155/2014/659801
37. Fernandes JBC, Zanardo LG, Galvão NN, Carvalho IA, Nero LA, Moreira MAS.
Escherichia coli from clinical mastitis: serotypes and virulence factors. J Vet Diagn Invest 2011;23:1146–52.
https://doi.org/10.1177/1040638711425581
39. Elhadidy M, Zahran E. Biofilm mediates
Enterococcus faecalis adhesion, invasion and survival into bovine mammary epithelial cells. Lett Appl Microbiol 2014;58:248–54.
https://doi.org/10.1111/lam.12184
42. Simojoki H, Hyvönen P, Ferrer CP, Taponen S, Pyörälä S. Is the biofilm formation and slime producing ability of coagulase-negative
Staphylococci associated with the persistence and severity of intramammary infection? Vet Microbiol 2012;158:344–52.
https://doi.org/10.1016/j.vetmic.2012.02.031
43. Abureema S, Smooker P, Malmo J, Deighton M. Molecular epidemiology of recurrent clinical mastitis due to
Streptococcus uberis: evidence of both an environmental source and recurring infection with the same strain. J Dairy Sci 2014;97:285– 90.
https://doi.org/10.3168/jds.2013-7074
44. Varhimo E, Varmanen P, Fallarero A, et al. Alpha- and β-casein components of host milk induce biofilm formation in the mastitis bacterium
Streptococcus uberis
. Vet Microbiol 2011;149:381–9.
https://doi.org/10.1016/j.vetmic.2010.11.010
46. Shaheen M, Tantary H, Nabi S. A treatise on bovine mastitis: disease and disease economics, etiological basis, risk factors, impact on human health, therapeutic management, prevention and control strategy. Adv Dairy Res 2016;4:1.
http://doi.org/10.4172/2329-888X.1000150
47. Washburn SP, White SL, Green JT, Benson GA. Reproduction, mastitis, and body condition of seasonally calved Holstein and Jersey cows in confinement or pasture systems. J Dairy Sci 2002;85:105–11.
https://doi.org/10.3168/jds.S0022-0302(02)74058-7
50. Sharma T, Das PK, Ghosh PR, Banerjee D, Mukherjee J. Association between udder morphology and
in vitro activity of milk leukocytes in high yielding crossbred cows. Vet World 2017;10:342–7.
http://doi.org/10.14202/vetworld.2017.342-347
53. De Visscher A, Piepers S, Haesebrouck F, De Vliegher S. Intramammary infection with coagulase-negative staphylococci at parturition: Species-specific prevalence, risk factors, and effect on udder health. J Dairy Sci 2016;99:6457–69.
https://doi.org/10.3168/jds.2015-10458
54. Fadlelmula A, Al Dughaym AM, Mohamed GE, Al Deib MK, Al Zubaidy AJ. Bovine mastitis: epidemiological, clinical and etiological study in a Saudi Arabian large dairy farm. Bulg J Vet Med 2009;12:199–206.
55. Sharma N, Singh NK, Singh OP, Pandey V, Verma PK. Oxidative stress and antioxidant status during transition period in dairy cows. Asian-Australas J Anim Sci 2011;24:479–84.
https://doi.org/10.5713/ajas.2011.10220
62. Blowey RW, Edmondson P. Mastitis control in dairy herds. 2nd edOxfordshire, UK: CAB International; 2010.
64. Hossain M, Paul S, Hossain M, Islam M, Alam M. Bovine mastitis and its therapeutic strategy doing antibiotic sensitivity test. Austin J Vet Sci Anim Husb 2017;4:1030.
65. Bhutto A, Murray R, Woldehiwet Z. California mastitis test scores as indicators of subclinical intra-mammary infections at the end of lactation in dairy cows. Res Vet Sci 2012;92:13–7.
https://doi.org/10.1016/j.rvsc.2010.10.006
66. Biggs A. Update on dry cow therapy 1. antibiotic v non-antibiotic approaches. In Practice 2017;39:255–72.
71. Schukken Y, Bronzo V, Locatelli C, et al. Efficacy of vaccination on Staphylococcus aureus and coagulase-negative
Staphylococci intramammary infection dynamics in 2 dairy herds. J Dairy Sci 2014;97:5250–64.
https://doi.org/10.3168/jds.2014-8008
72. Bradley AJ, Breen J, Payne B, White V, Green MJ. An investigation of the efficacy of a polyvalent mastitis vaccine using different vaccination regimens under field conditions in the United Kingdom. J Dairy Sci 2015;98:1706–20.
https://doi.org/10.3168/jds.2014-8332
74. Freick M, Frank Y, Steinert K, et al. Mastitis vaccination using a commercial polyvalent vaccine or a herd-specific
Staphylococcus aureus vaccine. Tierarztl Prax Ausg G Grosstiere Nutztiere 2016;44:219–29.
http://doi.org/10.15653/TPG-150912
76. De Vliegher S, Fox L, Piepers S, McDougall S, Barkema H. Invited review: Mastitis in dairy heifers: nature of the disease, potential impact, prevention, and control. J Dairy Sci 2012;95:1025–40.
https://doi.org/10.3168/jds.2010-4074
79. Yang W-T, Ke C-Y, Wu W-T, Lee R-P, Tseng Y-H. Effective treatment of bovine mastitis with intramammary infusion of
Angelica dahurica and
Rheum officinale extracts. Evid Based Complement Alternat Med 2019;2019:7242705.
https://doi.org/10.1155/2019/7242705
81. Anantasook N, Wanapat M, Cherdthong A, Gunun P. Effect of plants containing secondary compounds with palm oil on feed intake, digestibility, microbial protein synthesis and microbial population in dairy cows. Asian-Australas J Anim 2013;26:820–6.
https://doi.org/10.5713/ajas.2012.12689
83. He X, Wei Z, Zhou E, et al. Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice. Int Immunopharmacol 2015;28:470–6.
https://doi.org/10.1016/j.intimp.2015.07.012
84. Zhao Q, Yuan F, Liang T, et al. Baicalin inhibits
Escherichia coli isolates in bovine mastitic milk and reduces antimicrobial resistance. J Dairy Sci 2018;101:2415–22.
https://doi.org/10.3168/jds.2017-13349
85. Guo M, Zhang N, Li D, et al. Baicalin plays an anti-inflammatory role through reducing nuclear factor-κB and p38 phosphorylation in
S. aureus-induced mastitis. Int Immunopharmacol 2013;16:125–30.
https://doi.org/10.1016/j.intimp.2013.03.006
86. Guo M, Cao Y, Wang T, et al. Baicalin inhibits
Staphylococcus aureus-induced apoptosis by regulating TLR2 and TLR2-related apoptotic factors in the mouse mammary glands. Eur J Pharmacol 2014;723:481–8.
https://doi.org/10.1016/j.ejphar.2013.10.032
87. Yang W, Li H, Cong X, et al. Baicalin attenuates lipopolysaccharide induced inflammation and apoptosis of cow mammary epithelial cells by regulating NF-κB and HSP72. Int Immunopharmacol 2016;40:139–45.
https://doi.org/10.1016/j.intimp.2016.08.032
89. Wei Z, Zhou E, Guo C, et al. Thymol inhibits
Staphylococcus aureus internalization into bovine mammary epithelial cells by inhibiting NF-κB activation. Microb Pathog 2014;71:15–9.
http://doi.org/10.1016/j.micpath.2014.01.004
90. Jin X, Wang K, Liu H, Hu F, Zhao F, Liu J. Protection of bovine mammary epithelial cells from hydrogen peroxide-induced oxidative cell damage by resveratrol. Oxid Med Cell Longev 2016;2016:2572175.
https://doi.org/10.1155/2016/2572175
91. Zhang L, Sun L, Wei R, et al. Intracellular
Staphylococcus aureus control by virulent bacteriophages within MAC-T bovine mammary epithelial cells. Antimicrob Agents Chemother 2017;61:e01990–16.
http://doi.org/10.1128/AAC.01990-16
92. Fu Y, Gao R, Cao Y, et al. Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathway in lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol 2014;20:54–8.
https://doi.org/10.1016/j.intimp.2014.01.024
93. Suresh S, Sankar P, Telang AG, Kesavan M, Sarkar SN. Nanocurcumin ameliorates
Staphylococcus aureus-induced mastitis in mouse by suppressing NF-κB signaling and inflammation. Int Immunopharmacol 2018;65:408–12.
https://doi.org/10.1016/j.intimp.2018.10.034
94. Hashemzadeh-Cigari F, Khorvash M, Ghorbani G, et al. Effects of supplementation with a phytobiotics-rich herbal mixture on performance, udder health, and metabolic status of Holstein cows with various levels of milk somatic cell counts. J Dairy Sci 2014;97:7487–97.
https://doi.org/10.3168/jds.2014-7989
95. Fratini F, Casella S, Leonardi M, et al. Antibacterial activity of essential oils, their blends and mixtures of their main constituents against some strains supporting livestock mastitis. Fitoterapia 2014;96:1–7.
https://doi.org/10.1016/j.fitote.2014.04.003
96. Fratini F, Mancini S, Turchi B, et al. A novel interpretation of the fractional inhibitory concentration index: The case
Origanum vulgare L. and
Leptospermum scoparium J. R. et G. Forst essential oils against
Staphylococcus aureus strains
. Microbiol Res 2017;195:11–7.
https://doi.org/10.1016/j.micres.2016.11.005
97. Cho B-W, Cha C-N, Lee S-M, et al. Therapeutic effect of oregano essential oil on subclinical bovine mastitis caused by
Staphylococcus aureus and
Escherichia coli
. Korean J Vet Res 2015;55:253–7.
https://doi.org/10.14405/kjvr.2015.55.4.253
98. Lejonklev J, Kidmose U, Jensen S, et al. Effect of oregano and caraway essential oils on the production and flavor of cow milk. J Dairy Sci 2016;99:7898–903.
https://doi.org/10.3168/jds.2016-10910
99. Muthaiyan A, Martin EM, Natesan S, et al. Antimicrobial effect and mode of action of terpeneless cold-pressed Valencia orange essential oil on methicillin-resistant
Staphylococcus aureus
. J Appl Microbiol 2012;112:1020–33.
https://doi.org/10.1111/j.1365-2672.2012.05270.x
100. Federman C, Joo J, Almario J, Salaheen S, Biswas D. Citrus-derived oil inhibits
Staphylococcus aureus growth and alters its interactions with bovine mammary cells. J Dairy Sci 2016;99:3667–74.
https://doi.org/10.3168/jds.2015-10538
101. Federman C, Ma C, Biswas D. Major components of orange oil inhibit
Staphylococcus aureus growth and biofilm formation, and alter its virulence factors. J Med Microbiol 2016;65:688–95.
http://doi.org/10.1099/jmm.0.000286
102. Garcia M, Elsasser TH, Biswas D, Moyes KM. The effect of citrus-derived oil on bovine blood neutrophil function and gene expression
in vitro
. J Dairy Sci 2015;98:918–26.
https://doi.org/10.3168/jds.2014-8450
104. Wang K, Jin X-L, Shen X-G, et al. Effects of Chinese propolis in protecting bovine mammary epithelial cells against mastitis pathogens-induced cell damage. Mediators Inflamm 2016;2016:8028291.
https://doi.org/10.1155/2016/8028291
105. El Hafez SMA, Ismael AB, Mahmoud MB, Elaraby A-KA. Development of new strategy for non-antibiotic therapy: bovine lactoferrin has a potent antimicrobial and immunomodulator effects. Adv Infect Dis 2013;3:185–92.
http://doi.org/10.4236/aid.2013.33027
106. Piccart K, Vasquez A, Piepers S, De Vliegher S, Olofsson TC. Lactic acid bacteria from the honeybee inhibit the
in vitro growth of mastitis pathogens. J Dairy Sci 2016;99:2940–4.
https://doi.org/10.3168/jds.2015-10208
108. Pellegrino MS, Frola ID, Natanael B, Gobelli D, Nader-Macias MEF, Bogni CI.
In vitro characterization of lactic acid bacteria isolated from bovine milk as potential probiotic strains to prevent bovine mastitis. Probiotics Antimicro Prot 2019;11:74–84.
https://doi.org/10.1007/s12602-017-9383-6
114. De Freire Bastos MdC, Coelho MLV, da Silva Santos OC. Resistance to bacteriocins produced by Gram-positive bacteria. Microbiology 2015;161:683–700.
http://doi.org/10.1099/mic.0.082289-0
115. Field D, O’Connor R, Cotter PD, Ross RP, Hill C.
In vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against
Staphylococcus biofilms. Front Microbiol 2016;7:508.
http://doi.org/10.3389/fmicb.2016.00508
116. Castelani L, Arcaro JRP, Braga JEP, et al. Activity of nisin, lipid bilayer fragments and cationic nisin-lipid nanoparticles against multidrug-resistant
Staphylococcus spp. isolated from bovine mastitis. J Dairy Sci 2019;102:678–83.
https://doi.org/10.3168/jds.2018-15171
117. Ceotto-Vigoder H, Marques SLS, Santos INS, et al. Nisin and lysostaphin activity against preformed biofilm of
Staphylococcus aureus involved in bovine mastitis. J Appl Microbiol 2016;121:101–14.
https://doi.org/10.1111/jam.13136
118. Carvalho C, Costa AR, Silva F, Oliveira A. Bacteriophages and their derivatives for the treatment and control of food-producing animal infections. Crit Rev Microbiol 2017;43:583–601.
https://doi.org/10.1080/1040841X.2016.1271309
119. Varela-Ortiz DF, Barboza-Corona JE, González-Marrero J, et al. Antibiotic susceptibility of
Staphylococcus aureus isolated from subclinical bovine mastitis cases and
in vitro efficacy of bacteriophage. Vet Res Commun 2018;42:243–50.
https://doi.org/10.1007/s11259-018-9730-4
120. Porter J, Anderson J, Carter L, Donjacour E, Paros M.
In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis. J Dairy Sci 2016;99:2053–62.
https://doi.org/10.3168/jds.2015-9748
121. Fan J, Zeng Z, Mai K, et al. Preliminary treatment of bovine mastitis caused by
Staphylococcus aureus, with trx-SA1, recombinant endolysin of S. aureus bacteriophage IME-SA1. Vet Microbiol 2016;191:65–71.
https://doi.org/10.1016/j.vetmic.2016.06.001
122. Felipe V, Breser ML, Bohl LP, et al. Chitosan disrupts biofilm formation and promotes biofilm eradication in
Staphylococcus species isolated from bovine mastitis. Int J Biol Macromol 2019;126:60–7.
https://doi.org/10.1016/j.ijbiomac.2018.12.159
123. Orellano MS, Isaac P, Breser ML, et al. Chitosan nanoparticles enhance the antibacterial activity of the native polymer against bovine mastitis pathogens. Carbohydr Polym 2019;213:1–9.
https://doi.org/10.1016/j.carbpol.2019.02.016
124. Lanctôt S, Fustier P, Taherian AR, Bisakowski B, Zhao X, Lacasse P. Effect of intramammary infusion of chitosan hydrogels at drying-off on bovine mammary gland involution. J Dairy Sci 2017;100:2269–81.
https://doi.org/10.3168/jds.2016-12087
128. Guo YF, Xu NN, Sun W, Zhao Y, Li C, Guo M. Luteolin reduces inflammation in
Staphylococcus aureus-induced mastitis by inhibiting NF-κB activation and MMPs expression. Oncotarget 2017;8:28481–93.
https://doi.org/10.18632/oncotarget.16092
129. Wu H, Zhao G, Jiang K, et al. Puerarin exerts an antiinflammatory effect by inhibiting NF-kB and MAPK activation in
Staphylococcus aureus-induced mastitis. Phytother Res 2016;30:1658–64.
http://doi.org/10.1002/ptr.5666
130. Wang J, Guo C, Wei Z, et al. Morin suppresses inflammatory cytokine expression by downregulation of nuclear factor-κB and mitogen-activated protein kinase (MAPK) signaling pathways in lipopolysaccharide-stimulated primary bovine mammary epithelial cells. J Dairy Sci 2016;99:3016–22.
https://doi.org/10.3168/jds.2015-10330
131. Zhang J, Zhang Y, Huang H, et al. Forsythoside A inhibited
S. aureus stimulated inflammatory response in primary bovine mammary epithelial cells. Microb Pathog 2018;116:158–63.
https://doi.org/10.1016/j.micpath.2018.01.002
134. Montironi ID, Cariddi LN, Reinoso EB. Evaluation of the antimicrobial efficacy of
Minthostachys verticillata essential oil and limonene against
Streptococcus uberis strains isolated from bovine mastitis. Rev Argent Microbiol 2016;48:210–6.
https://doi.org/10.1016/j.ram.2016.04.005
135. Ökmen G, Cantekin Z, Alam MI, Türkcan O, Ergün Y. Antibacterial and antioxidant activities of L
iquidambar orientalis mill. various extracts against bacterial pathogens causing mastitis. Turkish J Agric-Food Sci Technol 2017;5:883–7.
https://doi.org/10.24925/turjaf.v5i8.883-887.1163
136. Mushtaq S, Rather MA, Qazi PH, et al. Isolation and characterization of three benzylisoquinoline alkaloids from
Thalictrum minus L. and their antibacterial activity against bovine mastitis. J Ethnopharmacol 2016;193:221–6.
https://doi.org/10.1016/j.jep.2016.07.040
137. Gomes F, Martins N, Ferreira ICFR, Henriques M. Anti-biofilm activity of hydromethanolic plant extracts against
Staphylococcus aureus isolates from bovine mastitis. Heliyon 2019;5:e01728.
https://doi.org/10.1016/j.heliyon.2019.e01728
138. Kher MN, Sheth NR, Bhatt VD.
In vitro antibacterial evaluation of
Terminalia chebula as an alternative of antibiotics against bovine subclinical mastitis. Anim Biotechnol 2019;30:151–8.
https://doi.org/10.1080/10495398.2018.1451752
140. Montironi ID, Reinoso EB, Paullier VC, et al.
Minthostachys verticillata essential oil activates macrophage phagocytosis and modulates the innate immune response in a murine model of
Enterococcus faecium mastitis. Res Vet Sci 2019;125:333–44.
https://doi.org/10.1016/j.rvsc.2019.07.015