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Genetic effects of sterol regulatory element binding proteins 
and fatty acid-binding protein4 on the fatty acid composition of 
Korean cattle (Hanwoo)
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Objective: This study identifies single-nucleotide polymorphisms (SNP) or gene combinations 
that affect the flavor and quality of Korean cattle (Hanwoo) by using the SNP Harvester method.
Methods: Four economic traits (oleic acid [C18:1], saturated fatty acids), monounsaturated 
fatty acids, and marbling score) were adjusted for environmental factors in order to focus solely 
on genetic effects. The SNP Harvester method was used to investigate gene combinations 
(two-way gene interactions) associated with these economic traits. Further, a multifactor 
dimensionality reduction method was used to identify superior genotypes in gene combinations. 
Results: Table 3 to 4 show the analysis results for differences between superior genotypes 
and others for selected major gene combinations using the multifactor dimensionality reduction 
method. Environmental factors were adjusted for in order to evaluate only the genetic effect. 
Table 5 shows the adjustment effect by comparing the accuracy before and after correction in 
two-way gene interactions.
Conclusion: The g.3977-325 T>C and (g.2988 A>G, g.3977-325 T>C) combinations of fatty 
acid-binding protein4 were the superior gene, and the superior genotype combinations across 
all economic traits were the CC genotype at g.3977-325 T>C and the AACC, GACC, GGCC 
genotypes of (g.2988 A>G, g.3977-325 T>C). 

Keywords: Fatty Acid-binding Protein4 (FABP4), Single-Nucleotide Polymorphism (SNP), 
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INTRODUCTION

In recent years, Korea's food consumption has increasingly focused on food quality as a result 
of the public's favorable perception of well-being. Because meat generally requires high quality, 
many studies have focused on ways to produce high-quality meat. In general, consumers' 
preferences vary according to the taste and meatiness of beef, which are influenced by the 
fatty acid composition (FAC) and many other factors. Therefore, this study identifies the single-
nucleotide polymorphisms (SNP) or gene combinations that influence the flavor and quality 
of Korean cattle (Hanwoo).
 According to the literature, meatiness is determined by marbling score (MS), meat color, 
and texture, which are closely related to the tenderness, flavor, and juiciness of beef [1-3]. 
Among these, the flavor of beef is influenced by the content of its unsaturated fatty acids [4-6], 
and the oleic acid (C18:1) content of Hanwoo is particularly high in unsaturated fatty acids 
[7-9]. In addition, oleic acid accounts for more than 80% of the monounsaturated fatty acids 
(MUFAs) and is a key determinant of beef flavor [10,11]. Therefore, four traits (C18:1, satu-
rated fatty acids [SFAs], MUFAs, and MS) have been found to be associated with the flavor 
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and quality of Hanwoo. The routes for synthesizing fatty acids 
can be divided into two types. Many types of gene contribute 
to the synthesis of fatty acids. First, chylomicron and very-low-
density lipoprotein produced in the small intestine and liver 
are transformed by the lipoprotein lipase (LPL) gene in the form 
of fatty acids (Ed- you have not used this fatty acid [FA] acronym 
in most other places in the paper) [12,13]. Second, Malonyl-
CoA, which is a substrate of the biosynthesis of fatty acids 
converted into 18:0-CoA by the fatty acid synthase (FASN) 
gene and the stearoyl-CoA desaturase (SCD) gene, converts 
stearic acid (C18:0) and palmitic acid (C16:0) into oleic acid 
(C18:1), which is an MUFA of the w-9 line [11,14,15]. In addition, 
a number of SNP combinations influencing the quality of 
Hanwoo have been found using the SCD, FASN, and LPL genes 
[16-18]. 
 This study investigates how major gene combinations and 
genotypes using fatty acid-binding protein4 (FABP4), which 
plays a major role in carrying fatty acids and which changes 
throughout two synthetic pathways in cells [19], and using 
sterol regulatory element binding proteins (SREBPs), which 
are transcriptional regulatory factors that influence the biosyn-
thesis of fatty acids, affect the flavor of beef through its FAC 
and MS [20,21]. In addition, 8 genes (2 of SREBPs and 6 of 
FABP4) were identified as superior to the remaining 23 genes 
(10 of SREBPs and 13 of FABP4) based on a test of FAC and 
economic traits [22]. In particular, as to the SNP selection on 
FABP4 (Genbank Accession No. NC_007312.4) and SREPBs 
(Genbank Number NC_007317.4), we have selected the 8 SNPs 
out of the total of 23 SNPs in our paper based on the result of 
the study [22] where only 8 SNPs showed polymorphism when 
23 SNPs that showed base mutations across all intron and exon 
on genomic DNA were applied to the Hanwoo.
 Environmental factors were adjusted first to examine only the 
genetic effects and verify the adjustment effects by comparing 
the accuracy before and after correction. Then, the SNP Harvester 
method was used to identify major gene combinations developed 
in Yang et al [23]. However, the SNP Harvester method was 
applied only to binary data in the case-control study. Therefore, 
this study's measures of the four traits were converted into binary 
values by using k-means cluster analysis. Because genotypes 
for gene combinations could not be investigated using the SNP 
Harvester method, a multifactor dimensionality reduction 
method was employed to identify genotypes in gene combina-
tions [24].

MATERIALS AND METHODS

Animals and phenotypes
Hanwoo cattle were bred in Gyeongbuk, Korea and 513 animals, 
the progeny of 18 sires, were used in this study. In general, they 
were weaned and castrated at 6 months of age, fed with growth 
stage feed for 18 months, and then fed a highly concentrated 

diet in their last 6 months. All steers were slaughtered at 
941±72 days of age, and MS was measured 24 h after slaughter. 
 Total lipids were extracted from approximately 500 mg of 
m. longissimus dorsi muscle with chloroform/methanol (2:1, 
v/v) according to Folch et al [30]. Extracted lipids were then 
methylated based on O’Keefe et al [26] by using sodium methyl-
ate. The extract was then filtered through filter paper in a water 
bath (40°C). The filtrate was mixed with distilled water, and 
then a layer of methanol and water was removed. After the re-
moval of chloroform and lipid layers using nitrogen gas, the 
sample was treated with BF3-methanol (14%) and subjected 
to trans-methylation at 65°C. Fatty acid content was analyzed 
using gas-chromatography (PerkinElmer, Inc., Waltham, MA, 
USA).

Genomic DNA and SNP genotyping
Total genomic DNA was extracted from the longissimus mus-
cle using the LaboPass TM Tissue Mini kit (Cosmo Genetech, 
Seoul, Korea). Two polymorphic SNPs of SREBPs and six poly-
morphic SNPs of the FABP4 gene in GenBank were genotyped 
according to Oh et al [27]. Primers for amplifications and ex-
tensions were designed for the single-base extension (Ed- this 
acronym is not used anywhere in the paper) for genotyping 
polymorphic sites [33] using forward, reverse, and extension 
primer sequences [27]. Reactions of the primer extension were 
performed using the SNaPshotddNTP Primer Extension Kit 
(Applied Biosystems, Foster City, CA, USA). One unit of shrimp 
alkaline phosphatase was added to the reaction mixture, which 
was then incubated for 1 h at 37°C, followed by 15 min at 72°C 
for enzyme inactivation, to clean the primer extension reaction. 
DNA samples containing extension products and the Gene-scan 
120 LIZ size standard solution were added to Hi-Di formamide 
(Applied Biosystems, USA) in accordance with the manufac-
turer’s recommendations. The mixture was incubated for 5 min 
at 95°C, followed by 5 min on ice, after which electrophoresis 
was conducted using the ABI PRISM 3130XL GeneticAnalyzer. 
The analysis was made using GeneMapper v4.0 (Applied Bio-
systems, USA).

Adjust model and Statistical analysis
Genetic factors influencing the economic traits associated with 
the flavor and quality of Hanwoo were examined. These economic 
traits included the breeding farm and age as environmental 
factors, and SNPs as a genetic factor [29]. To identify the genetic 
factors influencing economic traits, a model adjusted for envi-
ronmental factors such as the breeding farm and age was used: 
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 Step 3. Set the highest value from Step 2 as A*. 
 Step 4. If A* has a higher score than A, then replace A with A*. 
 Step 5. If the score of A* exceeds the threshold, then A* is 
classified as a significant group. 
 Step 6. For SNPi+1 that does not belong to group A, repeat 
Steps 2-5. 
 Step 7. If A* is not replaced with any other SNPi+1, then the 
process is stopped, and A* is determined as the final SNP 
combination set. 
 By repeating these steps, SNP combinations influencing eco-
nomic traits were selected. The SNP Harvester method was 
applied only to binary data in the case-control study. Therefore, 
measures of economic traits were converted into binary values 
through k-means cluster analysis.

RESULTS AND DISCUSSION

In this study, the SNPs associated with the FAC and quality of 
Hanwoo were FABP4 (g.2634+1018 A>T, g.2988 A>G, g.3690 
G>A, g.3710 G>C, g.3977-325 T>c, and g.4221 A>G) and SREBPs 
(g.3270+10274 C>T and g.13544 T>C). In addition, the four 
economic traits (C18:1, SFAs, MUFAs, and MS) that affect the 
evaluation criteria for Hanwoo, particularly the flavor and 
meatiness of beef, were considered. In addition, environmental 
factors such as age and the breeding farm were adjusted by linear 
regression analysis to evaluate only the genetic effect. Data were 
from 5,130 bootstrap samples based on the 513 steers in Oh et 
al [22]. The SNP Harvester method was used to find major gene 
combinations, and then a multifactor dimensionality reduc-
tion method was used to identify superior genotypes in gene 
combinations. Finally, the superior gene or SNP combination 
was identified by comparing individual and interaction effects. 
 Table 1 and 2 show the upper seven SNP combinations of 
two-way gene interactions related to the four economic traits. 

The value of x2 statistic used in SNP Harvester method, p-value 
and Cohen’s w were indicated. The effect size, w, was used by 
Cohen (1988) [30]. They set a small value of w at 0.1, a medium 
value at 0.3, and a large value at 0.5 [29]. Because most of the 
values shown in the Table 1, 2 appears larger than the medium 
value of 0.3, result can be seen to be effective. For the economic 
traits (C18:1, SFAs, and MUFAs) associated with fatty acids 
(Table 1), (g.3270+10274 C>T g.13544 T>C), (g.3270+10274 
C>T, g.2634+1018 A>T), (g.2988 A>G, g.3977-325 T>C), and 
(g.3977-325 T>C, g.4221 A>G) were chosen as major gene 
combinations. For MS (Table 2), the upper three combinations 
(g.3690 G>A, g.3977-325 T>C), (g.3270+10274 C>T, g.3977-
325 T>C), and (g.2634+1018 A>T, g.3690 G>A) were selected 
as major gene combinations.
 Table 3 and 4 show the analysis results for differences between 
superior genotypes and others for selected major gene combi-
nations using the multifactor dimensionality reduction method. 

Table 1. Upper seven-SNP combinations based on two-way gene interactions for each fatty acid

C18:1 SFA MUFA

SNP combination x2 (p-value) Cohen’s w2) SNP combination x2 (p-value) Cohen’s w2 SNP combination) x2 (p-value) Cohen’s w2

g.13544 T > C, 
g.2634+1018 A > T

1,101.93
( < 0.0001)

0.46 g.3710 G > C, 
g.3977-325 T > C

829.58 
( < 0.0001)

0.40 g.13544 T > C, 
g.2634+1018 A > T

998.45 
( < 0.0001)

0.44

g.3270+10274 C>T, 
g.13544 T>C1)

908.74 
( < 0.0001)

0.42 g.3977-325 T > C,
g.4221 A > G1)

790.02
( < 0.0001)

0.39 g.3270+10274 C > T, 
g.13544 T > C1)

897.90 
( < 0.0001)

0.42

g.13544 T > C, 
g.3690 G > A

781.17 
( < 0.0001)

0.39 g.2988 A > G, 
g.3977-325 T > C1)

789.47 
( < 0.0001)

0.39 g.3270+10274 C > T ,
g.2634+1018 A > T1)

711.05 
( < 0.0001)

0.37

g.3270+10274 C > T, 
g.2634+1018 A > T1)

708.61 
( < 0.0001)

0.37 g.3270+10274 C > T, 
g.13544 T > C1)

751.62 
( < 0.0001)

0.38 g.3710 G > C, 
g.3977-325 T > C

699.46 
( < 0.0001)

0.37

g.3710 G > C, 
g.3977-325 T > C

708.16 
( < 0.0001)

0.37 g.3690 G > A, 
g.3977-325 T > C

658.49 
( < 0.0001)

0.36 g.2988 A > G, 
g.3977-325 T > C1)

698.30 
( < 0.0001)

0.37

g.2988 A > G, 
g.3977-325 T > C1)

685.40 
( < 0.0001)

0.37 g.3270+10274 C > T, 
g.2634+1018 A > T1)

541.74 
( < 0.0001)

0.32 g.3977-325 T > C, 
g.4221 A > G1)

684.48 
( < 0.0001)

0.37

g.3977-325 T > C, 
g.4221 A > G1)

671.54 
( < 0.0001)

0.36 g.2634+1018 A > T, 
g.3690 G > A

407.04 
( < 0.0001)

0.28 g.3690 G > A, 
g.3977-325 T > C

635.21 
( < 0.0001)

0.35

SNP, single-nucleotide polymorphism; SFA, saturated fatty acid; MUFA, monounsaturated fatty acids.
1) Major gene combination. 2) Cohen’s effect size.

Table 2. Upper seven-SNP combinations based on two-way gene interactions for MS

SNP interaction x2 (p-value) Cohen’s w2)

g.3690 G > A, g.3977-325 T > C1) 2,213.03 
( < 0.0001)

0.66

g.3270+10274 C > T, g.3977-325 T > C1) 1,024.47 
( < 0.0001)

0.45

g.2634+1018 A > T, g.3690 G > A1) 993.31 
( < 0.0001)

0.44

g.3270+10274 C > T, g.3690 G > A 810.19 
( < 0.0001)

0.40

g.3270+10274 C > T, g.2634+1018 A > T 577.58 
( < 0.0001)

0.34

g.3270+10274 C > T, g.13544 T > C 314.75 
( < 0.0001)

0.25

g.13544 T > C, g.3710 G > C 288.06 
( < 0.0001)

0.24

SNP, single-nucleotide polymorphism; MS, marbling score.
1) Major gene combination. 2) Cohen’s effect size.
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For C18:1 and MUFAs, an increase in their content increases 
the quality of Hanwoo [8,10], whereas the opposite trend arises 
for SFAs [22]. In all gene combinations, differences between 
superior genotypes and others were significant. In addition, 
(g.2988 A>G, g.3977-325 T>C) and (g.3690 G>A, g.3977-325 
T>C) were selected as the best combinations with the largest 
difference in traits associated with fatty acids (C18:1, SFAs, and 
MUFAs) and MS, respectively (p<0.0001).
 Environmental factors were adjusted for in order to evaluate 
only the genetic effect. Table 5 shows the adjustment effect by 
comparing the accuracy before and after correction in two-way 
gene interactions. There were increases in accuracy in all gene 
combinations. In addition, (g.2988 A>G, g.3977-325 T>C) and 
(g.3690 G>A, g.3977-325 T>C), which were selected as the best 
combinations, showed the largest increases. After adjustment, 

training- and testing-balanced accuracy values for (g.2988 A>G, 
g.3977-325 T>C) were 0.9210 and 0.9163, respectively, for C18:1; 
0.9329 and 0.9329, respectively, for SFAs; and 0.9314 and 0.9314, 
respectively, for MUFA. Further, training- and testing-balanced 
accuracy values for (g.3690 G>A, g.3977-325 T>C) were 0.9143 
and 0.9143, respectively, for MS. Table 6 compares the individual 
and interaction effects of the best combination. For all economic 
traits, g.3977-325 T>C was the superior gene, and CC of g.3977-
325 T>C was the superior genotype. For C18:1 and MUFAs, 
the g.3977-325 T>C and (g.2988 A>G, g.3977-325 T>C) com-
binations had the same effect.
 In conclusions, g.3977-325 T>C and (g.2988 A>G, g.3977-
325 T>C) combinations of FABP4 were the superior SNP, 
particularly combinations of the CC genotype of g.3977-325 
T>C and the AACC, GACC, GGCC genotypes of (g.2988 A>G, 

Table 3. Superior genotypes of four-SNP combinations selected by fatty acids

SNP combination Traits Genotype N Mean SD t (p-value)

g.3270+10274 C > T 
g.13544 T > C

C18:1 TTTT, CTTT, CCTT, TTCT, CTCT, TTCC 2,390 44.89 1.50 < 0.0001
Others 2,740 43.17 0.96

SFA TTTT, CTTT, TTCT, CTCT 1,320 40.60 1.15 < 0.0001
Others 3,810 42.14 0.89

MUFA TTTT, CTTT, TTCT, CTCT, TTCC 2,358 53.76 1.55 < 0.0001
Others 2,772 51.97 0.99

g.3270+10274 C > T, 
g.2634+1018 A > T

C18:1 TTAA, CTAA 2,540 44.82 1.52 < 0.0001
Others 2,590 43.15 0.93

SFA TTAA, CTAA 2,540 41.17 1.25 < 0.0001
Others 2,590 42.31 0.76

MUFA TTAA, CTAA 2,540 53.64 1.61 < 0.0001
Others 2,590 51.96 0.94

g.2988 A > G,
g.3977-325 T > C1)

C18:1 AACC, GACC, GGCC2) 830 46.69 0.90 < 0.0001
Others 4,300 43.45 0.92

SFA GGTT, AACC, GACC, GGCC2) 1,076 39.99 1.05 < 0.0001
Others 4,054 42.21 0.65

MUFA AACC, GACC, GGCC2) 830 55.65 0.96 < 0.0001
Others 4,300 52.24 0.92

g.3977-325 T > C, 
g.4221 A > G

C18:1 CCAA, CCGA, CCGG 830 46.69 0.90 < 0.0001
Others 4,300 43.45 0.92

SFA TTGG, CCAA, CCGA, CCGG 1,094 40.02 1.07 < 0.0001
Others 4,036 42.21 0.65

MUFA CCAA, CCGA, CCGG 830 55.65 0.96 < 0.0001
Others 4,300 52.24 0.92

SNP, single-nucleotide polymorphism; SD, standard deviation; SFA, saturated fatty acid; MUFA, monounsaturated fatty acids.
1) The best gene combination. 2) Superior genotype of the best combination.

Table 4. Superior genotypes of three-SNP combinations selected by MS

SNP combination Genotype N Mean SD t (p-value)

g.3690 G > A, g.3977-325 T > C1) GGCT, GGCC, GACC2) 2,194 6.35 0.54 < 0.0001
Others 2,936 5.38 0.37

g.3270+10274 C > T, g.3977-325 T > C TTCT, TTCC, CTCT, CTCC, CCCC 2,578 6.23 0.57 < 0.0001
Others 2,552 5.35 0.39

g.2634+1018 A > T, g.3690 G > A AAGG 1,936 6.18 0.66 < 0.0001
Others 3,194 5.56 0.54

SNP, single-nucleotide polymorphism; SD, standard deviation; MS, marbling score.
1) The best gene combination. 2) Superior genotype of the best combination.
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g.3977-325 T>C). Consequently, future research should focus 
on this gene to produce high-quality beef that is low in SFAs 
and high in MUFAs and MS for the further development of 
the Hanwoo industry.
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Table 5. Adjustment effect by comparing accuracy before and after correction in two-SNP combinations 

Traits SNP combination
Training-bal. accuracy2) Testing-bal. accuracy3)

Before After Before After

C18:1 g.3270+10274 C > T, g.13544 T > C 0.6742 0.7211 0.6742 0.7174
g.3270+10274 C > T, g.2634+1018 A > T 0.6480 0.7634 0.6426 0.7634
g.2988 A > G, g.3977-325 T > C1) 0.6288 0.9210 0.6288 0.9163
g.3977-325 T > C, g.4221 A > G 0.6337 0.9208 0.6337 0.9208

SFA g.3270+10274 C > T, g.13544 T > C 0.5965 0.7100 0.5965 0.7100
g.3270+10274 C > T, g.2634+1018 A > T 0.6218 0.7080 0.6218 0.7080
g.2988 A > G, g.3977-325 T > C1) 0.6135 0.9329 0.6135 0.9329
g.3977-325 T > C, g.4221 A > G 0.6135 0.9307 0.6135 0.9307

MUFA g.3270+10274 C > T, g.13544 T > C 0.6314 0.7166 0.6314 0.7127
g.3270+10274 C > T, g.2634+1018 A > T 0.6507 0.7625 0.6507 0.7625
g.2988 A > G, g.3977-325 T > C1) 0.6489 0.9314 0.6489 0.9314
g.3977-325 T > C, g.4221 A > G 0.6540 0.9314 0.6540 0.9314

MS g.3690 G > A, g.3977-325 T > C1) 0.6012 0.9143 0.6012 0.9143
g.3270+10274 C > T, g.3977-325 T > C 0.5969 0.8384 0.5920 0.8384
g.2634+1018 A > T, g.3690 G > A 0.5709 0.7191 0.5709 0.7191

SNP, single-nucleotide polymorphism; SFA, saturated fatty acid; MUFA, monounsaturated fatty acids; MS, marbling score.
1) It is the best gene combination and shows the largest increases in each economic trait.
2) Training-balanced accuracy. 3) Testing-balanced accuracy.

Table 6. A comparison of individual and two-SNP interaction effects on fatty acids and MS

Traits SNP Genotype N Mean SD t (p-value)

C18:1 g.2988 A > G GG 770 44.77 1.66 < 0.0001
Others 4,360 43.83 1.43

g.3977-325 T > C1) CC2) 830 46.69 0.90 < 0.0001
Others 4,300 43.45 0.91

g.2988 A > G, g.3977-325 T > C1) AACC, GACC, GGCC2) 830 46.69 0.90 < 0.0001
Others 4,300 43.45 0.92

SFA g.2988 A > G GG 770 41.13 1.26 < 0.0001
Others 4,360 41.85 1.13

g.3977-325 T > C1) CC2 830 39.55 0.63 < 0.0001
Others 4,300 42.17 0.68

g.2988 A > G, g.3977-325 T > C GGTT, AACC, GACC, GGCC 1,076 39.99 1.05 < 0.0001
Others 4,054 42.21 0.65

MUFA g.2988 A > G GG 770 53.71 1.67 < 0.0001
Others 4,360 52.63 1.48

g.3977-325 T > C1) CC2 830 55.65 0.96 < 0.0001
Others 4,300 52.24 0.92

g.2988 A > G, g.3977-325 T > C1) AACC, GACC, GGCC2) 830 55.65 0.96 < 0.0001
Others 4,300 52.24 0.92

MS g.3690 G > A GG 2,853 6.00 0.6491 < 0.0001
Others 2,277 5.53 0.5704

g.3977-325 T > C1) CC2 830 6.81 0.4480 < 0.0001
Others 4,300 5.60 0.4880

g.3690 G > A, g.3977-325 T > C GGCT, GGCC, GACC 2,194 6.35 0.5356 < 0.0001
Others 2,936 5.38 0.3742

SNP, single-nucleotide polymorphism; MS, marbling score; SD, standard deviation; SFA, saturated fatty acid; MUFA, monounsaturated fatty acids.
1) The best gene or gene combination. 2) Superior genotype of the best gene or gene combination.
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