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Objective: Pig breeders cannot obtain phenotypic information at the time of selection for 
sow lifetime productivity (SLP). They would benefit from obtaining genetic information of 
candidate sows. Genomic data interpreted using deep learning (DL) techniques could 
contribute to the genetic improvement of SLP to maximize farm profitability because DL 
models capture nonlinear genetic effects such as dominance and epistasis more efficiently 
than conventional genomic prediction methods based on linear models. This study aimed 
to investigate the usefulness of DL for the genomic prediction of two SLP-related traits; 
lifetime number of litters (LNL) and lifetime pig production (LPP). 
Methods: Two bivariate DL models, convolutional neural network (CNN) and local 
convolutional neural network (LCNN), were compared with conventional bivariate linear 
models (i.e., genomic best linear unbiased prediction, Bayesian ridge regression, Bayes A, 
and Bayes B). Phenotype and pedigree data were collected from 40,011 sows that had 
husbandry records. Among these, 3,652 pigs were genotyped using the PorcineSNP60K 
BeadChip. 
Results: The best predictive correlation for LNL was obtained with CNN (0.28), followed 
by LCNN (0.26) and conventional linear models (approximately 0.21). For LPP, the best 
predictive correlation was also obtained with CNN (0.29), followed by LCNN (0.27) and 
conventional linear models (approximately 0.25). A similar trend was observed with the 
mean squared error of prediction for the SLP traits. 
Conclusion: This study provides an example of a CNN that can outperform against the 
linear model-based genomic prediction approaches when the nonlinear interaction 
components are important because LNL and LPP exhibited strong epistatic interaction 
components. Additionally, our results suggest that applying bivariate DL models could also 
contribute to the prediction accuracy by utilizing the genetic correlation between LNL and 
LPP.
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INTRODUCTION

Sow lifetime productivity (SLP)-related traits are essential for production efficiency and 
profitability [1-3]. To ensure profitability, a sow should produce at least three litters before 
being culled [4]. Early culling results in fewer piglets born alive over the sow’s lifetime 
and leads to irregular replacement of sows. Therefore, lifetime production traits, such as 
lifetime number of litters (LNL) or lifetime pigs production (LPP), are important because 
of their association with stayability, productivity, and animal welfare [5-7]. Additionally, 
predicting the breeding values of these traits at an early age is required because the breeder 
can only know the phenotypes of these sows after culling.
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 Estimating genomic breeding values using genome-wide 
single nucleotide polymorphism (SNP) data is vital for se-
lection in livestock breeding [8]. Over the years, various linear 
model-based methods for predicting genomic breeding values 
have been proposed. Methods applied successfully include 
genomic best linear unbiased prediction (GBLUP) and 
Bayesian models, such as Bayesian ridge regression (BRR), 
Bayes A, and Bayes B [9,10]. Additionally, multi-trait models 
applied with these approaches can increase the accuracy of 
genomic breeding values compared with single-trait genomic 
prediction models by considering genetic correlations among 
the traits of interests [11-13]. 
 With recent advances in the computational power, more 
researchers are applying deep learning (DL) methods such 
as convolutional neural networks (CNN) in genetic and be-
havioral studies [14-17]. 
 However, whether DL is superior to conventional linear 
model-based genomic prediction models is unclear [18]. 
Nevertheless, in genomic prediction, DL can be conducted 
without specific genetic model assumptions. A DL technique 
can robustly analyze a phenotype of interests governed by 
additivity, dominance or epistasis because it admits linear 
and numerous nonlinear activation functions [18,19].
 Several studies have been conducted using DL charac-
teristics in genomic prediction [20-22]. Furthermore, to 
enhance prediction accuracy in genomic selection, improved 
DL models have been introduced using the multi-trait 
frameworks that utilize genetic correlations between the 
traits [23-25].
 Many DL studies in genomic prediction have been mostly 
conducted in plant breeding [26-30]. However, only a limited 
number of DL studies have been conducted in livestock. In 
particular, DL studies in pigs have mainly focused on the 
number of live-born piglets [21,31]. Hence, further investi-
gations and verifications of DL models with real data are 
required in pigs. Several DL models have been developed; 
however, among them, the CNN model is one of the most 
utilized DL algorithms in various fields [32]. The CNN has 
an additional convolutional layer and a flattend layer in 
front of the fully-connected layers without pooling. In each 
convolutional layer, the CNN automatically performs the 
convolution operation along with an input of a predefined 
width and strides through the application of kernels for all 
SNP marker windows [19]. Local convolutional neural net-
work (LCNN) includes a local convolutional layer instead of 
the convolutional layer of a CNN. The LCNN provides a 
natural extension to convolutional layers by applying a re-
gion-specific filter [33]. The CNN assigns weight parameters 
applied to the same filter across all SNPs, whereas the LCNN 
fits them independently from each other. Thus, LCNN can 
correspond a lot better with our prior genetic knowledge 
of the genetic architecture of traits than traditional CNN [33].

 In this study, we aimed to investigate the usefulness of the 
DL technique for the bivariate genomic prediction of SLP-
related traits in pigs. The target traits of this study were SLP-
related LNL and LPP. We optimized the hyper-parameters of 
two DL models (i.e., CNN and LCNN) and compared them 
to the conventional linear models (i.e., GBLUP, BRR, Bayes 
A, and Bayes B). The predictive ability of the different methods 
was assessed as the correlation and the mean squared error 
(MSE) between the predicted and observed phenotypes using 
five-fold cross-validation.

MATERIALS AND METHODS

All experimental protocols were approved (approval num-
ber: NIAS20191511) by the Institutional Animal Care and 
Use Committee (IACUC) of the National Institute of Animal 
Science, Republic of Korea. All methods in this study were 
performed according to the relevant guidelines and regula-
tions. 

Dataset
We used datasets of the Large White and Landrace pigs that 
were born and raised at breeding farms in the Republic of 
Korea. These farms are well connected to a few farms for 
each breed as a national swine genetic evaluation system in 
Korea [34,35].
 Most pigs were born during the 2005 through 2017 decade. 
The phenotypic database included records of 40,011 sows 
with LNL and LPP. LNL ranged from 1 to 8, with a mean 
value of 4.5, and LPP ranged from 1 to 133, with a mean value 
of 48. For further analyses, adjusted means were calculated 
using the residuals derived separately for the individual 
environmental factors [18,21,36]. For adjustment, the effects 
of breed (Large White or Landrace), sow birth year (2005 
through 2017), and herd-year-season at last farrowing (270 
levels) were fitted as fixed effects. Finally, a total of 3,652 
adjusted phenotypes derived from Korean Large White (n 
= 2,629) and Landrace (n = 1,023) sows with high-density 
genotypes were used for the purpose of genomic evaluation.
 Genotyping was performed using the Illumina Porcine-
SNP60 BeadChip (Illumina, San Diego, CA, USA). The 
quality control process for the genotype data included the 
removal of individuals with pedigree errors, omission of 
monomorphic SNP genotypes, SNPs on sex chromosomes, 
SNPs with minor allele frequencies (<0.95), genotype call 
rate of <0.90, animal missing rate of >0.90. After quality con-
trol 47,335 SNPs remained. Missing genotypes were imputed 
with the FImpute program using pedigree information [37].

Estimation of variance components and genetic 
parameters
Since genetic architecture can influence the optimal model 
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choice for genomic prediction and the accuracy, additive and 
non-additive genetic effects on the two SLP-related traits 
were evaluated by estimating variance components using the 
following bivariate linear mixed model:
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SNP marker data [38] as follows:
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where Z is a matrix that accommodates the centered indi-
vidual SNP marker genotype values, pi is the frequency of 
the reference allele, and qi is the frequency of the alternative 
allele at the ith SNP marker. 
 To construct a dominance relationship matrix (D) using 
SNP marker information, we created an incidence matrix H, 
which contains the matrix of heterozygosity coefficients with 
element hki = 1–2piqi when individual k is heterozygous at 
the ith SNP marker, and hki = 0–2p_i q_i in other cases [39]. 
Consequently, 
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 The epistatic genetic relationship matrix (AA) can be de-
rived from the Hadamard products and traces of additive 
genetic relationship matrices [40], 
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 Va, Vd, Va, and R0 are unstructured 2×2 matrices. I is an 
identity matrix. To estimate the genetic correlation coeffi-
cient, we considered only the additive genetic (co)variance 
components. Genetic parameters were estimated in a Bayesian 
framework using the BGLR R-package [41]. The model was 
run using a Gibbs sampler algorithm for a total of 110,000 
cycles, discarding the first 10,000 samples for burn-in.

Design of linear models for genomic prediction
All linear models were implemented using the multi-trait 
method in the BGLR R-package that applies Bayesian infer-
ence [41]. We evaluated the performance of four different 
models (i.e., GBLUP, BRR, Bayes A, and Bayes B). The GB-
LUP and BRR models were implemented using the multi-
trait function. For the Bayes A and B models, we used the 
BGLR function for each trait and predicted genomic breed-
ing values with a multi-trait method using singular value 
decompositions [42]. The basic bivariate linear model is as 
follows:

 y = μ1+Zg+e 

where y is the vector of adjusted LNL and LPP phenotypes, 
μ1 is the vector of means for the two phenotypes, g is the 
vector with the effects of the markers, assumed to be random, 
whose assumptions depend on the model used (i.e., additive 
vs. additive + dominance + epistasis) e is the vector of resid-
uals, and Z is the incidence matrix of the genotypes.
 GBLUP assigns the same variance to all loci and treats 
them all as equally important in a genomic relationship ma-
trix [38]. BRR is a Bayesian method in which all regression 
coefficients are assumed to have a common variance. Thus, 
for an additive model, all markers with the same allele fre-
quency explain the same proportion of the additive variances 
and have the same shrinkage effect, which makes GBLUP 
and BRR similar [43]. 
 Bayes A assumes that the markers with the same minor 
allele frequency contribute differently to genetic variance 
because the variances in the effect of the markers are hetero-
geneous; Bayes B is a complement of Bayes A. Hence, Bayes 
A hypothesizes that that all SNPs have genetic effects and 
the variance of marker effects should follow the scaled t-dis-
tribution, while Bayes B assumes that only a small proportion 
of SNPs have effects. Bayes B does this by introducing π, the 
proportion of SNPs with no effect and the variance of marker 
effects should obey the scaled-t mixture distribution [41]. 
The models were run using a Gibbs sampler algorithm for a 
total of 10,000 cycles, discarding the first 5,000 samples for 
burn-in. 

Design of deep learning models for genomic prediction
In this study, we used the R interface for Keras with the Tensor-
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Flow backend for DL models [44]. For the DL-based genomic 
prediction, we used the CNN and LCNN models. The basic 
DL structures, number of layers, activation function, optimizer, 
and number of epochs were designed based on a previous 
study [33]. The dropout after each layer was used. The recti-
fied linear unit activation function (ReLU) was used with an 
adaptive estimate of the lower-order moments (Adam) opti-
mizer to minimize the MSE as a loss function [45].

Bayesian optimization of hyper-parameters 
We optimized the hyper-parameters with Bayesian optimi-
zation (BO), fitting the Gaussian process using the R package 
rBayesianOptimization [46]. The optimization bounds were 
set after some initial evaluations against validation data accord-
ing to previous studies [19,20,33]. The different hyperparameters 
that were optimized include kernel size (10 to 50) with one 
filter, number of units (20 to 200), dropout rate (0 to 0.05), 
and learning rate (0.00001 to 0.001), and batch size (16 to 
512). In CNN and LCNN, the BO used 80% of the training 
data, where 80% of this dataset was used for optimizing the 
hyper-parameters and the remaining 20% for validation using 
Keras independent split validation functions. The number of 
epochs was set to 50 for each training session.
 We set 70 iterations with 20 random initial points and 30 
iterations for optimization using the upper confidence bound 
as an acquisition function in BO. The stochastic sampling of 
mini-batches in stochastic gradient descent-based algorithms 
introduces uncertainty, which leads to parameter fluctua-
tions between iterations [21]. Ensemble methods with the 
replicates of the same algorithm can achieve better predic-
tive performance than with any of the algorithms alone [31]. 
In this study, 20 replicates of the BO process were run and 
the hyperparameters were extracted from the model with 
the highest test Pearson’s correlation, which was then aver-
aged to obtain model-averaged estimates.

Predictions using cross-validation
The performance of all models was evaluated using five-fold 
cross-validation. During validation, 80% of the data were 
used for model training, and the remaining 20% were used 
for model testing. In the two DL models, 10 replicates were 
run for each dataset. Obtaining model-averaged estimates 
can be achieved by averaging the ensemble predictions. The 
predictive ability of the different methods was assessed as 
the correlation between predicted genomic breeding values 
and observed phenotypic values together with the MSE.

RESULTS AND DISCUSSION

Estimation of variance components and genetic 
parameters
The variance components of the two traits are shown in Table 

1. For LNL and LPP, the additive genetic component value 
was lower than those of the dominance and epistatic genetic 
components. In particular, the epistasis component was 
higher than those of the additive and dominance components 
in both LNL (0.19±0.03) and LPP (30.8±7.1). In contrast to 
the findings of Vitezica et al [47], who reported that the 
additive component of variance for litter size (i.e., total num-
ber of piglets born per litter) in swine was much larger than 
the dominance and epistatic components, we found that the 
non-additive components accounted for a substantial pro-
portion of the total genetic variance components for the two 
SLP phenotypes.
 The narrow sense of heritability estimates was low, rang-
ing from 0.06±0.02 (LNL) to 0.10±0.02 (LPP). However, the 
broad sense of heritability estimates, which included the 
dominance and epistasis components, were high, ranging 
from 0.41±0.04 (LPP) to 0.53±0.05 (LNL). Therefore, the 
non-additive genetic components accounted for a greater 
fraction of the phenotypic variance components of LNL and 
LPP than that of the additive genetic component. 
 There was a high phenotypic (rp = 0.70±0.01) and genetic 
(rg = 0.74±0.04). correlations between the two SLP-related 
traits, suggesting that LNL measurements contain informa-
tion on LPP vice versa. Bivariate genomic selection approaches 
take advantage of this information derived from genetic cor-
relations to enhance genomic prediction accuracy [48]. 

Hyper-parameters tuning
We optimized hyper-parameters with Gaussian process-
based BO, an unbiased and systemic approach which avoids 
the failure to appropriately scan a large parameter space 
[31,49], and obtained optimal parameters using ensemble 
methods by averaging the replicated algorithm. All the hy-
perparameters for the DL methods chosen in this study are 
listed in Table 2. In the convolution layer, the selected kernel 
sizes were 28 and 25 for CNN and LCNN, respectively. The 
number of fully connected layers was 86 and 91 for the CNN 
and LCNN, respectively. The dropout rate was 0.28 for the 

Table 1. Mean and standard error of variance components and herit-
abilities

Variance component LNL LPP

Va 0.03 ± 0.01 14.3 ± 3.2
Vd 0.06 ± 0.01 17.9 ± 3.9
Vi 0.19 ± 0.03 30.8 ± 7.1
Va+Vd+Vi 0.28 ± 0.03 63.6 ± 7.4
VR 0.25 ± 0.03 90.1 ± 6.3
VP 0.53 ± 0.01 153.7 ± 3.9
h2 (narrow sense) 0.06 ± 0.02 0.10 ± 0.02
h2 (broad sense) 0.53 ± 0.05 0.41 ± 0.04

LNL, lifetime number of litter; LPP, lifetime pig production; Va, additive 
variance; Vd, dominance variance; Vi, additive × additive epistasis variance; 
VR, residual variance; VP, phenotypic variance. 
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CNN, and 0.34 for the LCNN. The learning rate was 0.0004 
for CNN and LCNN.

Cross-validation for traits
We evaluated six models for predicting LNL and LPP using 
five-fold cross-validation (Figure 1). Among the models for 
the two traits, CNN had the highest performance, followed 
by LCNN. For LNL, CNN had an outstanding performance 
for LPP, with the highest predictive correlation (CNN 0.28, 
LCNN 0.26 and linear models 0.21 to 0.22). The CNN with 
the lowest MSE (0.47) outperformed the LCNN (0.49) and 
linear models (approximately 0.49). For LPP, the highest 
predictive correlation was produced by CNN (0.29), followed 
by LCNN (0.27), and linear models (0.25). Under MSE, CNN 
(139), and LCNN (142) outperformed other linear models 

Table 2. Hyperparameters for deep learning models

Hyperparameters (bounds) CNN LCNN

Convolution layer
Number of layers (fixed) 1 1
Number of filters (fixed) 1 1
Kernel size and strides (10 to 50) 28 25

Fully-connected layer
Number of layers (fixed) 2 2
Number of neurons (20 to 200) 86 91

Activation (fixed) ReLU ReLU
Dropout rate (0 to 0.5) 0.28 0.34
Optimizer (fixed) Adam Adam
Learning rate (0.00001 to 0.001) 0.0004 0.0004
Batch size (16 to 512 for only MLP) 32 32
Epochs (fixed) 50 50

CNN, convolutional neural networks; LCNN, local convolutional neural 
networks; ReLU, rectified linear unit activation function.

Figure 1. Means and standard errors of predictive performance (predictive correlation and mean squared error) for different genomic prediction 
models obtained from 5-fold cross-validations. (A) Predictive correlation for lifetime number of litter (LNL). (B) Predictive correlation for lifetime 
pig production (LPP). (C) Mean squared error for LNL. (D) Mean squared error for LPP. GBLUP, genomic best linear unbiased prediction using addi-
tive effect only; BRR, Bayesian ridge regression using additive effect only; Broad: GBLUP using additive, dominance and epistatic effects; CNN, 
convolutional neural networks; LCNN, local convolutional neural networks.

A.                                            B.
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(BRR/GBLUP 143 and Bayes B/Bayes A 150) (Figure 1). 
Therefore, CNN and LCNN improved the prediction accu-
racy and error compared with the results obtained using the 
linear model-based genomic prediction methods. Addition-
ally, we performed GBLUP with additive, dominance and 
epistasis effects. The accuracy of this model increased com-
pared to the model with only additive effects, but it was still 
inferior to CNN. Similarly, the MSE of the broad model de-
creased compared to the additive model, but it was still 
higher than CNN (Figure 1). 
 The prediction performance obtained with GBLUP was 
similar to those of other Bayesian linear models and slightly 
better in some cases, indicating that LNL and LPP are most 
likely controlled by their polygenic nature rather than the 
large quantitative trait loci effects of particular chromosome 
regions, and CNN is a robust method for the prediction of 
these traits. Previously, LCNN was recommended for ge-
nomic prediction as a region-specific filter is more consistent 
with the prior genetic knowledge on the genetic architecture 
of traits than CNN [33]. In this study, the LCNN had a high-
er performance than that of linear models in both predictive 
correlations and MSE for the two traits in this study. However, 
the performance of LCNN is lower than that of CNN, indi-
cating that applying different filters by marker regions 
implemented in the LCNN did not improve the predictive 
performance of the two SLP-related traits. 
 Two factors could help the predictive performance of 
convolution-based models (i.e., CNN and LCNN) to out-
perform linear models in this study. The first factor is the 
robustness of CNN and LCNN models on the nonlinear 
patterns in the genetic architecture of traits of interest [18,19]. 
For example, if a trait has the genetic architecture described 
by both linear (additivity) and nonlinear patterns (dominance, 
epistasis), convolution-based models can be robust in the 
genomic prediction, as shown in Figure 1. In this study, LNL 
and LPP exhibited a higher broad sense of heritability than 
the narrow sense of heritability, indicating a substantial con-
tribution of the nonlinear genetic effects on the phenotypic 
variation of the two traits in pigs. In addition, the CNN and 
LCNN models can accommodate the correlation between 
nearby SNP markers (i.e., linkage disequilibrium) via a 
mathematical operation named convolution [19]. 
 The second factor is the application of a bivariate model 
for the genomic prediction. The multi-trait models for con-

ventional genomic selection improve prediction accuracy, 
and genetic correlation between traits is the basis for the ad-
vantage of multi-trait models [47]. The LNL and LPP were 
very similar in genetic architecture, with a strong genetic 
correlation between them [7]. The genetic correlation coeffi-
cient obtained in this study was high. For the DL model, 
Sandhu et al [25] reported that multi-trait models increased 
prediction accuracy in genomic selection. Another study using 
simulation data also reported that in convolution models, 
the higher the genetic correlation between traits, the higher 
the prediction accuracy for each trait [33]. Deep learning 
has great promise for livestock breeding, but its computa-
tional burden is a major challenge. Although Table 3 does 
not show a significant computational burden for DL-based 
genomic prediction for the study dataset, advances in soft-
ware and hardware will be required to address this challenge 
in the future, especially as the number of animals exceeds 
the number of SNPs. One obvious challenge is that adding 
data to a DL model typically requires retraining the model, 
which can be computationally expensive, especially for large 
datasets. In contrast, multiple regression-based approaches 
such as BRR, Bayes A, and Bayes B can use marker-level so-
lutions without re-estimation by adding trained data. Another 
challenge is that the results of BO for DL models may vary 
depending on the training dataset. This is because DL models 
are more complex than multiple regression-based models 
and can be more sensitive to the specific data used for train-
ing. Despite these challenges, DL has the potential to become 
a more practical tool for livestock breeding as advances in 
software and hardware continue.

CONCLUSION

In this study, we showed that SLP-related traits are mainly 
influenced by the polygenic nature and nonlinear interac-
tions of genetic components. CNN is a robust method for 
predicting genomic breeding values of the two traits. Fur-
thermore, we provide optimized hyperparameters using the 
Bayesian ensemble approach for the DL models. Our results 
also suggest that the convolution models with the bivariate 
method could account for the genetic correlation between 
bivariate and nonlinear genetic interactions (dominance and 
epistasis) using filters and neurons. Hence, DL approach 
can outperform linear model-based genomic prediction 

Table 3. Computational time comparison of genomic prediction models1)

Item
Genomic prediction models

GBLUP BRR BayesA BayesB Broad CNN LCNN
Runtime (min) 65 160 357 350 115 34 39

GBLUP, genomic best linear unbiased prediction; BRR, Bayesian ridge regression; CNN, convolutional neural networks; LCNN, local convolutional neural net-
works.
1) CPU, Intel Core i5-8500 CPU@ 3.00 GHz; GPU, NVIDIA RTX 3080.
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approaches for traits with strong non-additive interactions.
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