Relationship between DNA mismatch repair and CRISPR/Cas9-mediated knock-in in the bovine β-casein gene locus

Seung-Yeon Kim¹, Ga-Yeon Kim², Hyeong-Ju You², Man-Jong Kang¹,*

*Corresponding Author: Man-Jong Kang

Tel: +82-62-530-2113, Fax: +82-62-530-2129, E-mail: mjkang@chonnam.ac.kr

¹Department of Animal Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea

ORCID

Seung-Yeon Kim https://orcid.org/0000-0002-2395-9404

Hyeong-Ju You https://orcid.org/0000-0002-6546-5904

Ga-Yeon Kim https://orcid.org/0000-0003-1409-432X

Man-Jong Kang https://orcid.org/0000-0002-7628-0614
Title of the manuscript: Relationship between DNA mismatch repair and CRISPR/Cas9-mediated knock-in in the bovine β-casein gene locus

ABSTRACT

Objective: Efficient gene editing technology is critical for successful knock-in in domestic animals. RAD51 gene plays an important role in strand invasion during homologous recombination (HR) in mammals, and is regulated by CHK1 and CHK2 genes, which are upstream elements of RAD51. In addition, mismatch repair (MMR) system is inextricably linked to HR-related pathways and regulates HR via heteroduplex rejection. Thus, the aim of this study was to investigate whether CRISPR/Cas9-mediated knock-in efficiency of human lactoferrin (hLF) knock-in vector in the bovine β-casein gene locus can be increased by suppressing DNA mismatch repair (MMR)-related genes (MSH2, MSH3, MSH6, MLH1 and PMS2) and overexpressing DNA double-strand break (DSB) repair-related genes (RAD51, CHK1, CHK2).

Methods: MAC-T cells were transfected with a knock-in vector, RAD51, CHK1 or CHK2 overexpression vector and CRISPR/sgRNA expression vector to target the bovine β-casein gene locus, followed by treatment of the cells with CdCl₂ for 24 hours. After 3 days of CdCl₂ treatment, the knock-in efficiency was confirmed by polymerase chain reaction (PCR). The mRNA expression levels of DNA MMR-related and DNA DSB repair-related genes were assessed by quantitative real-time PCR (RT-qPCR).

Results: Treatment with CdCl₂ decreased the mRNA expression of RAD51 and MMR-related genes but did not increase the knock-in efficiency in MAC-T cells. Also, the overexpression of DNA DSB repair-related genes in MAC-T cells did not significantly affect the mRNA expression of MMR-related genes and failed to increase the knock-in efficiency.

Conclusion: Treatment with CdCl₂ inhibited the mRNA levels of RAD51 and DNA MMR-related genes in MAC-T cells. However, the function of MMR pathway in relation to HR may differ in
various cell types or species.

Keywords: Knock-in; Homologous recombination (HR); RAD51 recombinase (RAD51); Mismatch repair (MMR); Cadmium chloride (CdCl$_2$); Clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9)
INTRODUCTION

The efficiency of gene targeting is still low due to the limited opportunity for spontaneous gene targeting in somatic cells and random integration of exogenous genes into the genome [1]. Genome editing with engineered nucleases, such as ZFNs, TALENs and CRISPR/Cas9 system, is a powerful technique that facilitates substantially higher levels of accurate genome editing at endogenous gene loci than traditional methods [2, 3].

As noted above, these technologies can introduce DSBs in a specific gene locus and the cells repair DNA damage via several DNA repair pathways, including NHEJ and HR [4]. The NHEJ pathway usually induces indels in DNA sequences that may result in functional loss in the gene [5]. In contrast, the HR pathway is homology-dependent that resects DSB ends and synthesizes DNA using homologous DNA templates [6].

However, despite the availability of ZFNs, TALENs or CRISPR/Cas9 system, the efficiency of gene targeting by HR was reported to be in the range of 0.5-20% [7, 8, 9] since the frequency of gene targeting by HR is 1,000-fold lower than NHEJ [10]. Hence, to facilitate knock-in of exogenous gene into the genome, many studies designed to enhance HR efficiency have been carried out recently [11, 12].

It is widely accepted that RAD51 is an important player in HR and the repair of DNA DSBs [13]. RAD51 can be regulated by CHK1 (Checkpoint kinase 1) or CHK2 (Checkpoint kinase 2) [14]. CHK1 and CHK2 are basically involved in cell cycle, and also play a role in RAD51 recruitment to the sites of DNA damage [15].

Recent studies have reported that HR is inextricably linked with MMR [16]. DNA MMR is a highly conserved post-replication repair system that recognizes base-base replacement, indels and other DNA errors [17]. Homologous and homeologous recombination rates were increased in MMR-defective strains [18]. It is also reported that down-regulation of MutS complex, which are involved in
initiation of MMR, can be generated by cadmium-induced oxidative stress [19]. Therefore, it is necessary to suppress the MMR mechanism to increase HR-mediated knock-in efficiency.

However, in spite of numerous studies investigating cadmium, MMR, and DNA DSB repair-related genes, the correlation between MMR mechanism and knock-in efficiency has yet to be determined in bovine cells. Accordingly, the aim of this study was to investigate the correlation between MMR and HR system in mammalian cells and to develop efficient gene editing tools mediated via CRISPR/Cas9. In this study, in an attempt to increase the knock-in efficiency of hLF gene in the β-casein locus of MAC-T cells, the expression levels of DNA MMR-related genes were inhibited by cadmium chloride (CdCl$_2$) treatment, and DNA DSB repair-related genes (RAD51, CHK1 or CHK2) were overexpressed.
MATERIALS AND METHODS

Cell culture and transfection

Bovine mammary epithelial cells (MAC-T) were cultured in the growth medium: Dulbecco’s modified Eagle medium (DMEM) (Hyclone, Logan, UT, USA) supplemented with 10% fetal bovine serum (FBS) (Hyclone, USA), 1% penicillin/streptomycin (Hyclone, USA) and 0.05% gentamicin (Sigma-Aldrich Inc., St. Louis, MO, USA). MAC-T cells were seeded at a density of 1.75 x 10^5 cells per well into 12-well plates (SPL, Gyeonggi-do, Korea) or 3.0 x 10^5 cells per well into 6-well plates (SPL) and incubated at 37°C with 5% CO_2. The culture medium was replaced with 0.5 or 1 mL of fresh media before transfection. Thereafter, the cells were co-transfected with circular hLF knock-in vector II (1.25 or 2 μg), CRISPR-sgRNA expression vector (0.625 or 1 μg) and overexpression vectors of DNA DSB repair-related genes (bRAD51, bCHK1 or bCHK2) (0.625 or 1 μg) using Xfect transfection reagent (Takara, Tokyo, Japan) according to the manufacturer’s instructions. Totally, 2.5 or 5 μg of DNA was added to each well and the total volume was made up to 50 or 100 μL with Xfect reaction buffer, followed by the addition of 0.75 or 1.5 μL of Xfect polymer. After 24 hours of transfection, the treatment groups were treated with 1, 10, or 25 μM CdCl_2 and the medium was replaced with fresh medium the next day. Cells were incubated for further 48 hours, followed by the extraction of genome DNA from the transfected cells using the G-DEX™ Iic genomic DNA extraction kit (for cell/tissue) (Intron, Seongnam-si, Korea) according to the manufacturer’s instructions.

Construction of the knock-in vector

To construct the knock-in vector II, we first modified the 3’ homology arm of pBSK(-)m_RG1_1 lkb 5’ arm_hLF_BGHpolyA_EGFP_BGHpolyA _2 kb 3’ arm, termed hLF knock-in vector I, which contains approximately 2 kb homology arm at 3’ site and was previously reported by Kim et al. [20]. The 3’ arm used for knock-in vector was amplified by PCR from genome DNA of MAC-T cells. The
1 kb 3' arm fragment is homologous to a region of exon 3 in the β-casein gene and starts exactly from the Cas9/sgRNA cleavage site, which was previously reported by Jeong et al. [21]. PCR was performed using the bβCE3 II S primer (AAGCTTACCTGGTGGTAAGATATTATTTAT) and the bβCE3 1kbPHR II AS primer (GTCGACCAGATTAGGACTACACTCA), containing HindIII and SalI restriction enzyme sites using KOD FX Neo (Toyobo, Osaka, Japan). The purified PCR fragment was sub-cloned into pGEM-T easy vector (Promega, Madison, Wisconsin, USA) and the primary structure of the fragment was confirmed via sequencing using T7 and SP6 primers. Finally, to construct the knock-in vector II, the pGEM T-easy_β-casein exon 3 3’ arm plasmid was digested by Hind III and Sal I enzymes to obtain the bβCE3 3’ arm. The fragment was then inserted into the Hind III-Sal I site of pBSK(-)m_RG1_1 kb 5’ arm_hLF_BGHpolyA_EGFP_BGHpolyA_2 kb 3’ arm plasmid to produce pBSK(-)m_RG1_1 kb 5’ arm_hLF_BGHpolyA_EGFP_BGHpolyA_1 kb 3’ arm plasmid, designated as hLF knock-in vector II.

Analysis of knock-in efficiency by PCR

Knock-in efficiency of hLF knock-in vector in MAC-T cells was confirmed by first and second PCRs. The genome DNA from each group was used as a DNA template for PCR. The first PCR was performed with RG1_hLF 5sc S1 primer (GCTCCTCCTTTACTTCTTGTCCTACTTT) and hLFsc AS1 primer (AACTCACTATTATGCCGTGGCTGTGGTGAA), harboring outside of 5’ arm and hLF gene each in hLF knock-in vector II using KOD FX Neo (Toyobo, Japan). The PCR entailed denaturation at 95°C for 15 minutes, followed by 25 cycles of amplification at 95°C for 20 seconds, annealing at 66°C for 40 seconds, strand extension at 72°C for 2.5 minutes, and a final elongation step at 72°C for 5 minutes. Then, the second PCR was carried out using the RG1_hLF 5sc S4 primer (CAAATTACGAATTAGCATGAGAAAAA) and the hLFsc AS4 primer (CTTGTCTTTCGCTCTGCTCTCGGG) using KOD FX Neo (Toyobo, Japan) as follows: denaturation at 95°C for 15 minutes, followed by 30 cycles of amplification at 95°C for 20 seconds, annealing at 58°C for 40 seconds, strand extension at 72°C for 1.5 minutes, and a final elongation step
at 72°C for 5 minutes. The PCR fragments were confirmed by electrophoresis on a 0.8% agarose gel. For comparative quantification, each DNA band was normalized to the bβCE7 region.

RT-qPCR analysis

Total RNA from MAC-T cells was isolated using RNeasy mini kit (QIAGEN, Hilden, Germany). Next, for cDNA synthesis, 2 μg of total RNA was used as a template and RT-PCR was performed using random primers and Superscript II reverse transcriptase (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol. Quantitative real-time PCR was carried out to measure the mRNA expression of RAD51 and DNA MMR-related genes in a total volume of 20 μL, containing 20 ng cDNA, 10 pmol of forward and reverse primer pairs (Table 1), and 10 μl of TOPreal™ qPCR 2X PreMIX (Enzynomics, Daejeon, Korea). All reactions were repeated three times and were run by Mx3000P (Agilent Technologies, Santa Clara, CA, USA) under the following conditions: denaturation at 95°C for 10 minutes, followed by 40 cycles of amplification at 95°C for 10 seconds, annealing at 60°C for 15 seconds, and strand extension at 72°C for 15 seconds. For comparative quantification, mRNA expression levels of each gene were normalized to the mouse Rplp0 transcript.

Western blot analysis

Protein from MAC-T cells was extracted using PRO-PREP™ protein extraction solution (Intron, Korea) according to the manufacturer’s instructions. Protein extracts (50 μg) derived from the cells were resolved by 8% or 12% SDS-PAGE at 60 mA for 1.5 hours and electroblotted onto PVDF membranes for protein blotting (Bio-Rad Co., Hercules, CA, USA) at 80 V for 2 hours in a trans-blot apparatus (Bio-Rad Co., USA) using Tris-glycine buffer. After blocking the membrane for 1 hour at room temperature in 5% skim milk in TBST (Tris-buffered saline with 0.1% Tween 20), the blot was probed with rabbit polyclonal anti-MSH2 antibody (Abcam, Cambridge, UK) at a dilution of 1:5000 or mouse monoclonal anti-RAD51 antibody (Santa Cruz Biotechnology, Dallas, TX, USA) at a dilution of 1:1000 in 5% skim milk in TBST overnight at 4°C. After overnight incubation, the
membrane was washed with TBST three times and incubated with horseradish peroxidase (HRP)-
conjugated goat anti-rabbit IgG or HRP-conjugated goat anti-mouse IgG at a dilution of 1:1000 in 5%
skim milk in TBST at room temperature for 2 hours. The membrane was washed three times with
TBST, and MSH2 and RAD51 proteins were detected using EZ-Western Lumi Pico Kit and EZ-
Western Lumi Femto Kit (Dogen, Seoul, Korea). To remove bound antibody and facilitate the reuse
of the blot, the membrane was incubated in SDS/β-mercaptoethanol solution at 55°C for 20 minutes.
The antibody was stripped off, and the membrane was washed three times with TBST, followed by
steps as described in the western blot protocol above. The blot was re-probed with mouse monoclonal
β-actin antibody (Santa Cruz Biotechnology, USA) at a dilution of 1:1000 in 5% skim milk in TBST,
following blocking at 4°C overnight. The membrane was then washed with TBST three times and
incubated with HRP-conjugated goat anti-mouse IgG at a dilution of 1:2000 in 5% skim milk in
TBST at room temperature for 2 hours. After membrane was washed three times with TBST, β-actin
protein was detected using EZ-Western Lumi Pico Kit (Dogen, Korea). For comparative
quantification of protein levels, RAD51 and MSH2 protein bands were normalized to β-actin,
respectively.

Statistical analysis

Densitometric quantification of DNA or protein bands was performed by analyzing each data
using UN-SCAN-IT gel Analysis Software (Silk Scientific Inc., Orem, UT, USA). Subsequently, a
statistical analysis of the mRNA levels and densitometric quantification of DNA and protein bands
was performed with GraphPad Prism 5 (GraphPad Software Inc., San Diego, CA, USA). The data
were analyzed in either of the two ways. First, the data were analyzed with One-way ANOVA,
followed by Dunnett test. This method was used to compare all columns with reference to the control
column. Second, a t-test was used for comparison of differences between the two columns. The
confidence interval was set to 95%.
RESULTS

Construction of the knock-in vector expressing hLF gene in the bovine β-casein gene locus

The knock-in vector was constructed for expression of the bovine β-casein fused hLF gene in the bovine mammary gland as shown in the schematic diagram (Figure 1). The knock-in vector is composed of a 5’ homology arm, hLF gene, BGH poly A signal, CMV-EGFP gene and 3’ homology arm. Poly A signal was attached to stabilize the expression of foreign genes. EGFP gene was used as a positive selection marker to visualize the expression of the knock-in vector in the cells. The knock-in vector was designed to carry a 3’ arm that was homologous to an exon 3 region in the bovine β-casein gene locus and starting exactly at the cleavage site by CRISPR-sgRNA system targeting β-casein exon 3. If the knock-in vector undergoes HR in the bovine β-casein gene locus, hLF can be expressed under the control of β-casein promoter and gene regulatory sequences.

CRISPR/Cas9-mediated knock-in efficiency and expression levels of RAD51 and DNA MMR-related genes in MAC-T cells treated with CdCl₂

To determine whether CdCl₂ treatment affected cell viability in MAC-T cells, we treated the cells with different concentrations of CdCl₂. In response to CdCl₂ treatment, MAC-T cell viability ratios were increased at 1 and 10 µM (114.05% and 131.38% each) and decreased at 25 µM (94.08%) compared with the untreated control (Figure 2A). No viable cells were found at 50 µM (data not shown). Statistical analysis did not reveal any notable differences between the groups. Next, the impact of CdCl₂ concentration on knock-in efficiency in MAC-T cells was analyzed by transfecting the cells with hLF knock-in vector II and CRISPR-sgRNA expression vector, followed by treatment with CdCl₂ (0 to 25 µM). As a result, the knock-in efficiency in the presence of CRISPR-sgRNA expression vector was significantly higher than in the absence of the expression vector. However, no detectable change in knock-in efficiency was observed between the CdCl₂ treatment groups (Figure 2B). Based on these results, the cells were treated with 1 µM CdCl₂ in subsequent experiments to
minimize cell death and mutation rate.

Next, to determine whether the treatment times of CdCl$_2$ affected the mRNA levels of RAD51 and DNA MMR-related genes, MAC-T cells were treated with 1 µM CdCl$_2$ for 3 days and the total RNA was extracted daily. As indicated in Figure 2C, our experiments detected decreased levels of mRNA expression in MutSα (MSH2 and MSH6) and MutLα (MLH1 and PMS2) homologs, and RAD51 by increasing the duration of CdCl$_2$ treatment. Compared with the control, the mRNA levels of MSH2 and MSH6 on day 3 were decreased by 36%, MLH1 was decreased by 29%, and PMS2 was decreased by 66%. In contrast, MSH3 mRNA levels were increased on day 1 and decreased on day 2 and 3, but were slightly higher than the control levels (1.2-fold).

To determine the influence of different treatment times of CdCl$_2$ on the expression of MSH2 and RAD51 proteins, a western blot was carried out and normalized to β-actin. Compared with the control, the levels of MSH2 protein were increased on day 1 and 2 (1.2-fold and 3.3-fold, respectively) and decreased on day 3 (Figure 2D). Moreover, the expression of RAD51 protein was increased on day 1 and 2 (1.22-fold and 2.32-fold, respectively) compared with the control, and decreased on day 3 (Figure 2E). However, no significant difference was observed between day 0 and 3. Consequently, CdCl$_2$ treatment decreased the mRNA levels of DNA MMR-related genes but did not decrease the expression of MSH2 protein.

CRISPR/Cas9-mediated knock-in efficiency and expression levels of DNA MMR-related genes in MAC-T cells overexpressing RAD51

To determine whether overexpression of RAD51 gene increases the knock-in efficiency by enhancing HR, MAC-T cells were transfected with hLF knock-in vector II, CRISPR-sgRNA expression vector and RAD51 overexpression vector. As a result, the mRNA (Figure 3A) and protein (Figure 3B) levels of RAD51 were significantly up-regulated. Also, the knock-in efficiency in the presence of CRISPR-sgRNA expression vector was higher than in the group without the expression vector. However, the overexpression of RAD51 gene did not enhance knock-in efficiency (Figure 3C). Thus, to investigate whether DNA MMR-related genes affected RAD51 gene, the mRNA levels of
MMR-related genes were assessed by real-time qPCR. The results showed that MLH1 mRNA levels were slightly increased by RAD51 overexpression (1.23-fold), but other MutS and MutL homologs had no significant change (Figure 3D).

To determine whether RAD51 overexpression and down-regulation of DNA MMR-related genes increases the knock-in efficiency in MAC-T cells, cells overexpressing RAD51 gene were treated with 1 µM CdCl₂. As a result, RAD51 expression was decreased by CdCl₂ treatment (Figure 4A). Also, the knock-in efficiency in the presence of CRISPR-sgRNA expression vector was higher than in the group without the expression vector. However, no significant difference was observed among the groups (Figure 4B). Next, the mRNA levels of DNA MMR-related genes were analyzed via RT-qPCR. As indicated in Figure 4C, increased MSH3 mRNA levels were observed (1.5-fold), but there was no significant difference in other DNA MMR-related genes in MAC-T cells overexpressing RAD51 gene and treated with 1 µM CdCl₂. All things considered, RAD51 overexpression and treatment with 1 µM CdCl₂ did not increase the knock-in efficiency in MAC-T cells. Further, the mRNA levels of DNA MMR-related genes showed no significant difference.

CRISPR/Cas9-mediated knock-in efficiency and expression levels of RAD51 and DNA MMR-related genes in MAC-T cells overexpressing CHK1

In order to determine whether the overexpression of CHK1 gene can increase the knock-in efficiency by stimulating RAD51 gene, MAC-T cells were transfected with hLF knock-in vector II, CRISPR-sgRNA expression vector and RAD51 overexpression vector. As a result, the CHK1 mRNA levels were up-regulated by CHK1 overexpression vector (3-fold) (Figure 5A). Also, the knock-in efficiency in the presence of CRISPR-sgRNA expression vector was higher than in the group without the expression vector. However, overexpression of CHK1 gene did not increase the knock-in efficiency in MAC-T cells (Figure 5B). Next, the analysis of the mRNA levels of RAD51 and DNA MMR-related genes following CHK1 overexpression (Figure 5C).
CRISPR/Cas9-mediated knock-in efficiency and expression levels of RAD51 and DNA MMR-related genes in MAC-T cells overexpressing CHK2

To determine whether overexpression of CHK2 gene increases HR-mediated knock-in efficiency in MAC-T cells by stimulating RAD51 gene, the MAC-T cells were transfected with hLF knock-in vector II, CRISPR-sgRNA expression vector and CHK2 overexpression vector. First, it was observed that the mRNA levels of CHK2 gene were up-regulated by CHK2 overexpression vector (20-fold) (Figure 6A). Also, the knock-in efficiency in the presence of CRISPR-sgRNA expression vector was higher than in the absence of the expression vector. However, the overexpression of CHK2 gene did not increase the knock-in efficiency in MAC-T cells (Figure 6B). Next, the analysis of the mRNA levels of RAD51 and DNA MMR-related genes by RT-qPCR revealed a decrease in the mRNA levels of RAD51 gene by 30% and a slight increase in MSH6 by 1.13-fold, but no significant difference was observed in other MutS and MutL homologs (Figure 6C).
DISCUSSION

This study investigated whether the regulation of DNA DSB repair-related genes and MMR system was associated with knock-in efficiency of hLF knock-in vector in the β-casein gene locus of MAC-T cells.

As stated in the introduction, numerous studies have been demonstrated an increase in the HR-mediated knock-in efficiency. However, gene targeting via HR is strongly suppressed by DNA MMR-dependent anti-recombination when the DNA strands contain excessively mismatched nucleotides [16]. In general, metal compounds such as cadmium have been reported as mutagenic since they interrupt HR-related systems and cell cycle regulation [22]. Decrement of MMR activity after CdCl₂ treatment was detected up to at least 5 µM in a dose-dependent manner [23]. This finding raises the question whether CdCl₂ increased the knock-in efficiency by inhibiting MMR system.

In the present study, MAC-T cells were co-transfected with hLF knock-in vector II and CRISPR-sgRNA expression vector. Changes in knock-in efficiency and mRNA levels by CdCl₂ treatment were also investigated. The PCR analysis revealed that CdCl₂ treatment did not induce dose-dependent knock-in efficiency in MAC-T cells. This result does not support our hypothesis that knock-in efficiency is increased by CdCl₂ treatment in a dose-dependent manner. However, based on the gradual decrease in mRNA levels of RAD51 and DNA MMR-related genes by increasing the treatment duration of CdCl₂, our data support that CdCl₂ treatment down-regulates the mRNA levels of RAD51 and DNA MMR-related genes depending on the duration of treatment [19, 24]. Both MutSα and MutSβ complexes possess ATPase activity and initiate mismatch repair by recognizing and binding to a mismatch. At this point, cadmium inhibits ATP hydrolysis of MutSα complex and as a result of this inhibition, binding to mismatched DNA by MSH2-MSH6 are reduced. Regarding the mechanism of down-regulation of MMR-related genes by cadmium, it is clear to say that cadmium can generate oxidative stress in cells and induce significant down-regulation of MutS complex composed of MSH2 and MSH6 [19]. Therefore, our results indicate that CdCl₂ treatment does affect the mRNA levels of RAD51 and DNA MMR-related genes, and the mismatch recognition and
excision functions of MMR system in bovine. However, the expression of MSH2 and RAD51 proteins was increased on day 1 and 2 by CdCl$_2$ treatment, which was not consistent with the aforementioned results about mRNA expression levels. The binding sites of cadmium in RAD51 and DNA repair-related proteins have not been perfectly identified. Therefore, further studies are needed to investigate the detailed molecular mechanisms underlying DNA repair and inhibitory effects of cadmium.

In the present study, RAD51 gene was overexpressed in MAC-T cells in order to assess whether RAD51 overexpression promoted knock-in efficiency. A recent study reported that the knock-in efficiency by CRISPR/Cas9-mediated HR was enhanced up to 2.5-fold by co-transfection of RAD51 in brain neurons [25]. RAD51 gene overexpression has not only revealed such positive results but also negative effects on initiation of HR. Overexpression of human RAD51 reduced DSB-induced HR in CHO cells and human cells [26]. In contrast to prior studies, our data indicated no significant difference in CRISPR/Cas9-mediated knock-in efficiency in MAC-T cells following RAD51 overexpression. It may reflect differences in levels of overexpression or host species of RAD51 gene. Furthermore, the mRNA levels of MLH1 were slightly increased but other DNA MMR-related genes showed no detectable changes in MAC-T cells following RAD51 overexpression. These results suggest that RAD51 gene overexpression may not substantially affect the mRNA levels of DNA MMR-related genes.

The limitation to recombination introduced by heterology can be overcome in MSH2-deficient cells [27]. Accordingly, it was hypothesized that CdCl$_2$ treatment suppresses MMR activity in MAC-T cells overexpressing RAD51 gene and thus increase HR-mediated knock-in efficiency. However, treatment of MAC-T cells overexpressing RAD51 gene with 1 µM CdCl$_2$ did not significantly affect the knock-in efficiency or mRNA levels of DNA MMR-related genes apart from MSH3 gene, which was increased 1.5-fold. Cadmium affects the functions of eukaryotic MutSα complex (MSH2-MSH6) to bind to mismatched DNA via inhibition of ATP hydrolysis [28] but only at lethal concentrations [19]. In this study, we treated 1 µM CdCl$_2$ to minimize unexpected mutations in cells and this
concentration was able to down-regulate MMR-related genes but might be insufficient to block the
binding of MutS complex to mismatched DNA, resulting in no significant change in knock-in
efficiency. In addition, cadmium exposure to lower concentrations such as 1 µM stimulates DNA
synthesis and cell proliferation in various cell lines, whereas further elevated concentrations are
inhibitory. Furthermore, the reduction of MMR activity in a human cell extract by cadmium is
concentration-dependent, but 1 µM was undetectable in vitro since MMR pathway was incomplete
even in the absence of cadmium [23]. Our data correspond to this previous study and thus suggest the
need to treat the cells with increased concentrations of CdCl₂ to inhibit MMR activity.

Furthermore, disruption of CHK1 expression inhibited the formation of RAD51 foci and resulted
in high levels of unrepaired DSB; however, DNA damage was repaired efficiently in CHK1-proficient
cells. The mismatch repair system at the DNA damage sites facilitates CHK2 phosphorylation by
ATM and enables MSH2 binding to CHK2 [29]. In this respect, it was supposed that CHK1 or CHK2
overexpression increases the knock-in efficiency in MAC-T cells by stimulating RAD51 localization
and enhancing HR frequency. Based on our results, no significant differences were found in knock-in
efficiency and mRNA levels of RAD51 and DNA MMR-related genes in MAC-T cells following
CHK1 overexpression. Accordingly, these results may be explained by low levels of CHK1
overexpression. Similarly, no significant difference in CHK1 overexpression was detected. It is
plausible that CHK1 and CHK2 kinases do not critically stimulate RAD51 and HR. At this point, the
functions of the two kinases, CHK1 and CHK2, remain to be elucidated in response to DNA double-
strand breaks triggered by CRISPR/Cas9 system.

In summary, the inhibition of the mRNA levels of RAD51 and DNA MMR-related genes in
MAC-T cells was triggered by CdCl₂ treatment. However, no detectable differences in knock-in
events were confirmed in MAC-T cells treated with CdCl₂ or overexpressing DNA DSB repair-related
genes. Further studies in relation to the DNA DSB repair-related genes apart from CHK1, CHK2, and
DNA MMR-related genes are needed to effectively regulate HR. Besides, additional interaction
between DNA DSB repair-related genes and DNA MMR-related genes need to be revealed.
Presumably, the absence of significant changes in knock-in efficiency in MAC-T cells is attributed to the distance between the sites of modification and cleavage by the CRISPR-sgRNA system in the knock-in vector. According to the study in 2014, introduction of the cleavage site in close proximity to the altered locus in the design of sgRNAs for HR, has a strong effect on the knock-in efficiency [30]. However, the knock-in vector used in this study was designed to carry a 5’ homology arm, which is distant from the DSB point. Further, differences in sensitivity to cadmium and functions of MMR system in mammalian cell types and species suggest the need for further studies in other types of mammalian cells, such as mouse or human.
CONFLICT OF INTEREST

We certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

ACKNOWLEDGMENTS

This work was supported by a National Research Foundation of Korea (NRF) grant awarded by the Korea government (MSIT) (No. 2019R1F1A1061424) and the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through the Agri-Bio industry Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA)(No. 316037-4).

REFERENCES

https://DOI: 10.1016/j.cell.2013.08.022

https://DOI: 10.1093/nar/gkw064

Table 1. Primers used for quantitative real-time PCR analysis of specific genes.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer name</th>
<th>Sequence (5' → 3')</th>
<th>Size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rplp0</td>
<td>mRplp0 F</td>
<td>CGACCTGGAAGTCCAACTA</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>mRplp0 R</td>
<td>ATCTGCTGCATCTGCTTG</td>
<td></td>
</tr>
<tr>
<td>MSH2</td>
<td>bMSH2 CDS S</td>
<td>ATGAGGAAGCCCAGAATGCC</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>bMSH2 CDS AS</td>
<td>AATCGTGATGTGCTGATC</td>
<td></td>
</tr>
<tr>
<td>MSH3</td>
<td>bMSH3 CDS S</td>
<td>TATCAGGACAGAGGTATTATGATT</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>bMSH3 CDS AS</td>
<td>TGCTTCCAATCTAACAAATC</td>
<td></td>
</tr>
<tr>
<td>MSH6</td>
<td>bMSH6 CDS S</td>
<td>ATGTTCAGCAAGTTCTTTCA</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>bMSH6 CDS AS</td>
<td>TGCTTGTGGATGAATTAGAAG</td>
<td></td>
</tr>
<tr>
<td>MLH1</td>
<td>bMLH1 CDS S</td>
<td>TTATCGGAGCCAGCACCAC</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>bMLH1 CDS AS</td>
<td>AAGTCCTTATAGGAGCACC</td>
<td></td>
</tr>
<tr>
<td>PMS2</td>
<td>bPMS2 CDS S</td>
<td>AGGCTTATAGCACCCTGACT</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>bPMS2 CDS AS</td>
<td>AGTCAAAGCCATCTCTCTCTCA</td>
<td></td>
</tr>
<tr>
<td>RAD51</td>
<td>bRAD51 CDS S</td>
<td>TTTCAGCCAGGAGATGCAC</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>bRAD51 CDS AS</td>
<td>ACCACTGCTACACAAACTCA</td>
<td></td>
</tr>
<tr>
<td>CHK1</td>
<td>bCHK1 CDS S</td>
<td>TCCCAGCTACTTGTCTCTGA</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>bCHK1 CDS AS</td>
<td>TTTCAGCTGCTGAGCTGCC</td>
<td></td>
</tr>
<tr>
<td>CHK2</td>
<td>bCHK2 CDS S</td>
<td>AGAAGAGGCTCTGGATCTCG</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>bCHK2 CDS AS</td>
<td>CTGAAGCCACGGGTCTTT</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. The knock-in strategy targeting the bovine β-casein gene locus. The diagram shows the targeting strategy of knock-in vectors by HR in the β-casein gene locus. A) Genome structure of the β-casein gene locus. B) hLF knock-in vector II. C) Targeted structure of knock-in vector by HR. The hLF transgene is expressed by β-casein gene regulatory DNA sequence and mRNA is translated with β-casein by ribosome. The hLF protein is synthesized and secreted using the β-casein gene locus. The PCR primer pairs used for detecting HR events are indicated by arrows.
Figure 2. Knock-in efficiency and expression levels of RAD51 and DNA MMR-related genes in MAC-T cells treated with CdCl₂. A) Cell viability. B) PCR analysis of knock-in efficiency. PC, positive control; M, DNA size marker (1 kb ladder). C) The mRNA levels of Mut S genes (MSH2, MSH3 and MSH6), Mut L genes (MLH1 and PMS2) and RAD51 gene. D-E) Protein expression of MSH2 and RAD51. Error bars show the standard deviation from each sample. NS, no statistical difference; *, p < 0.05; **, p < 0.01; ***, p < 0.0001.
Figure 3. The expression levels of RAD51 and DNA MMR-related genes and CRISPR/Cas9-mediated knock-in efficiency in MAC-T cells induced overexpression of RAD51 gene. A) The mRNA levels of RAD51. B) Protein expression of RAD51. C) PCR analysis of knock-in efficiency. M, DNA size marker (1 kb ladder). D) The mRNA levels of DNA MMR-related genes. Error bars show the standard deviation from each sample. NS, no statistical difference; *, p < 0.05.
Figure 4. The mRNA levels of RAD51 and DNA MMR-related genes, and CRISPR/Cas9-mediated knock-in efficiency in MAC-T cells induced overexpression of RAD51 and treated with 1 µM CdCl₂.

A) The mRNA levels of RAD51 gene. B) PCR analysis of knock-in efficiency. M, DNA size marker (1 kb ladder). C) The mRNA levels of DNA MMR-related genes. Error bars show the standard deviation from each sample. NS, no statistical difference; *, p < 0.05; **, p < 0.01.
Figure 5. The mRNA levels of CHK1 and DNA MMR-related genes, and CRISPR/Cas9-mediated knock-in efficiency in MAC-T cells induced overexpression of CHK1 gene. A) The mRNA levels of CHK1 gene. B) PCR analysis of knock-in efficiency. M, DNA size marker (1 kb ladder). C) The mRNA levels of RAD51 and DNA MMR-related genes. Error bars show the standard deviation from each sample. NS, no statistical difference.
Figure 6. The mRNA levels of CHK2 and DNA MMR-related genes, and CRISPR/Cas9-mediated knock-in efficiency in MAC-T cells induced overexpression of CHK2 gene. A) The mRNA levels of CHK2 gene. B) PCR analysis of knock-in efficiency. M, DNA size marker (1 kb ladder). C) The mRNA levels of RAD51 and DNA MMR-related genes. Error bars show the standard deviation from each sample. NS, no statistical difference. *, p < 0.05.
Figure 1

A) β-casein locus

B) Knock-in vector

C) Targeted locus

Produce and secrete hLF in the bovine β-casein gene locus
Figure 3

A)

B)

C)

D)

0

200

400

600

Relative mRNA expression

0

2

3

4

5

Relative mRNA expression

MSH2 MSH3 MSH6

RAD51 (35kDa)

β-actin (48kDa)

MLH1 PMS2

0.0

0.5

1.0

1.5

2.0

2.5

KI+sg

KI+sg+bRAD51

Relative mRNA expression

MSH2 MSH3 MSH6

0

1

2

3

4

5

KI+sg

KI+sg+bRAD51

Relative mRNA expression

MSH2 MSH3 MSH6

0

1

2

3

4

5

KI+sg

KI+sg+bRAD51

Relative mRNA expression

MSH2 MSH3 MSH6

Figure 4

A) bRAD51

<table>
<thead>
<tr>
<th>Condition</th>
<th>KI vector</th>
<th>sgRNA</th>
<th>bRAD51</th>
<th>CdCl2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative mRNA expression</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

B) KI vector

<table>
<thead>
<tr>
<th>Condition</th>
<th>KI vector</th>
<th>sgRNA</th>
<th>bRAD51</th>
<th>CdCl2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative density</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

C) mRNA expression

<table>
<thead>
<tr>
<th>Condition</th>
<th>KI vector</th>
<th>sgRNA</th>
<th>bRAD51</th>
<th>CdCl2</th>
</tr>
</thead>
<tbody>
<tr>
<td>mRNA expression</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Accepted Article
Figure 5

A) Relative mRNA expression

B) KI vector + + + + +
sgRNA - - + + +
bCHK1 - + - + +

B) KI vector + + + + +
sgRNA - - + + +
bCHK1 - + - + +

C) Relative mRNA expression

bRAD51

bCHK1

KI vector + + + + +
sgRNA - - + + +
bCHK1 - + - + +

MLH1

PMS2

KI vector + + + + +
sgRNA + + + + +
bCHK1 - + - + +

MSH2

MSH3

MSH6

KI vector + + + + +
sgRNA + + + + +
bCHK1 - + - + +

PC M
Figure 6

A) Relative mRNA expression for bCHK2 with KI vector, sgRNA, and bCHK2.

B) Presence of KI vector, sgRNA, and bCHK2 with PC and M bands.

C) Relative mRNA expression for bRAD51, MSH2, MSH3, MSH6, MLH1, and PMS2 with KI vector, sgRNA, and bCHK2.