2. Meng J, Zhao Y, Lan X, Wang S. Granulosa cell transcriptomic study reveals the differential regulation of lncRNAs and mRNAs related to follicle development in goat. Reprod Domest Anim 2022;57:967–79.
https://doi.org/10.1111/rda.14163
3. Li P, Meng J, Liu W, Smith GW, Yao J, Lyu L. Transcriptome analysis of bovine ovarian follicles at predeviation and onset of deviation stages of a follicular wave. Int J Genom 2016;2016:3472748.
https://doi.org/10.1155/2016/3472748
4. Meng J, Zhao Y, Song X, An Q, Wu Z. Deciphering the miRNA transcriptome of granulosa cells from dominant and subordinate follicles at first follicular wave in goat. Anim Biotechnol 2024;35:2259967.
https://doi.org/10.1080/10495398.2023.2259967
6. Son WY, Das M, Shalom-Paz E, Holzer H. Mechanisms of follicle selection and development. Minerva Ginecol 2011;63:89–102.
8. Reverchon M, Cornuau M, Ramé C, Guerif F, Royere D, Dupont J. Resistin decreases insulin-like growth factor I-induced steroid production and insulin-like growth factor I receptor signaling in human granulosa cells. Fertil Steril 2013;100:247–55.
https://doi.org/10.1016/j.fertnstert.2013.03.008
9. Feng G, Liu J, Lu Z, et al. miR-450-5p and miR-202-5p synergistically regulate follicle development in black goat. Int J Mol Sci 2023;24:401.
https://doi.org/10.3390/ijms24010401
13. Pu Y, Wang Z, Bian Y, et al. All-trans retinoic acid improves goat oocyte nuclear maturation and reduces apoptotic cumulus cells during in vitro maturation. Anim Sci J 2014;85:833–9.
https://doi.org/10.1111/asj.12216
14. Chen F, Jiang Z, Jiang S, et al. Dietary vitamin A supplementation improved reproductive performance by regulating ovarian expression of hormone receptors, caspase-3 and Fas in broiler breeders. Poult Sci 2016;95:30–40.
https://doi.org/10.3382/ps/pev305
15. Whaley SL, Hedgpeth VS, Farin CE, Martus NS, Jayes FCL, Britt JH. Influence of vitamin A injection before mating on oocyte development, follicular hormones, and ovulation in gilts fed high-energy diets. J Anim Sci 2000;78:1598–1607.
https://doi.org/10.2527/2000.7861598x
24. Shen M, Jiang YZ, Wei Y, et al. Tinagl1 suppresses triple-negative breast cancer progression and metastasis by simultaneously inhibiting integrin/fak and egfr signaling. Cancer Cell 2019;35:64–80.
https://doi.org/10.1016/j.ccell.2018.11.016
27. Brożyna AA, Jóźwicki W, Jochymski C, Slominski AT. Decreased expression of CYP27B1 correlates with the increased aggressiveness of ovarian carcinomas. Oncol Rep 2015;33:599–606.
https://doi.org/10.3892/or.2014.3666
30. Dewailly D, Robin G, Peigne M, Decanter C, Pigny P, Catteau-Jonard S. Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update 2016;22:709–24.
https://doi.org/10.1093/humupd/dmw027
31. Kimura AP, Yoneda R, Kurihara M, Mayama S, Matsubara S. A long noncoding RNA, lncRNA-Amhr2, plays a role in amhr2 gene activation in mouse ovarian granulosa cells. Endocrinology 2017;158:4105–21.
https://doi.org/10.1210/en.2017-00619
32. Jiang B, Xue M, Xu D, Song J, Zhu S. Down-regulated lncRNA HOTAIR alleviates polycystic ovaries syndrome in rats by reducing expression of insulin-like growth factor 1 via microRNA-130a. J Cell Mol Med 2020;24:451–64.
https://doi.org/10.1111/jcmm.14753
34. Wu H, Liu Q, Yang N, Xu S. Polystyrene-microplastics and DEHP co-exposure induced DNA damage, cell cycle arrest and necroptosis of ovarian granulosa cells in mice by promoting ROS production. Sci Total Environ 2023;871:161962.
https://doi.org/10.1016/j.scitotenv.2023.161962