1. Zhu Y, Wang Y, Zhao J, et al. CircRNA-1967 participates in the differentiation of goat SHF-SCs into hair follicle lineage by sponging miR-93-3p to enhance LEF1 expression. Anim Biotechnol 2023;34:482–94.
https://doi.org/10.1080/10495398.2021.1975729
2. Jiao Q, Wang YR, Zhao JY, Wang ZY, Guo D, Bai WL. Identification and molecular analysis of cashmere goat lncRNAs reveal their integrated regulatory network and potential roles in secondary hair follicle. Anim Biotechnol 2021;32:719–32.
https://doi.org/10.1080/10495398.2020.1747477
5. Bai WL, Dang YL, Yin RH, et al. Differential expression of microRNAs and their Regulatory networks in skin tissue of liaoning cashmere goat during hair follicle cycles. Anim Biotechnol 2016;27:104–12.
https://doi.org/10.1080/10495398.2015.1105240
7. Shirokova V, Biggs LC, Jussila M, Ohyama T, Groves AK, Mikkola ML. Foxi3 deficiency compromises hair follicle stem cell specification and activation. Stem Cells 2016;34:1896–908.
https://doi.org/10.1002/stem.2363
8. Yin R, Wang Y, Wang Z, et al. Discovery and molecular analysis of conserved circRNAs from cashmere goat reveal their integrated regulatory network and potential roles in secondary hair follicle. Electron J Biotechnol 2019;41:37–47.
https://doi.org/10.1016/j.ejbt.2019.06.004
10. Rao X, Lai L, Li X, Wang L, Li A, Yang Q. N6-methyladenosine modification of circular RNA circ-ARL3 facilitates Hepatitis B virus-associated hepatocellular carcinoma via sponging miR-1305. IUBMB Life 2021;73:408–17.
https://doi.org/10.1002/iub.2438
12. Yin R, Yin R, Bai M, et al. N6-Methyladenosine modification (m6A) of circRNA-ZNF638 contributes to the induced activation of SHF stem cells through miR-361-5p/Wnt5a axis in cashmere goats. Anim Biosci 2023;36:555–69.
https://doi.org/10.5713/ab.22.0211
13. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–8.
14. Chen Z, Ling K, Zhu Y, Deng L, Li Y, Liang Z. circ0000069 promotes cervical cancer cell proliferation and migration by inhibiting miR-4426. Biochem Biophys Res Commun 2021;551:114–20.
https://doi.org/10.1016/j.bbrc.2021.03.020
17. Muppirala UK, Lewis BA, Dobbs D. Computational tools for investigating RNAprotein interaction partners. J Comput Sci Syst Biol 2013;6:182–7.
https://doi.org/10.4172/jcsb.1000115
23. Sinha T, Panigrahi C, Das D, Chandra Panda A. Circular RNA translation, a path to hidden proteome. Wiley Interdiscip Rev RNA 2022;13:e1685.
https://doi.org/10.1002/wrna.1685
26. Geyfman M, Plikus MV, Treffeisen E, Andersen B, Paus R. Resting no more: re-defining telogen, the maintenance stage of the hair growth cycle. Biol Rev Camb Philos Soc 2015;90:1179–96.
https://doi.org/10.1111/brv.12151
38. Polycarpou-Schwarz M, Gunderson SI, Kandels-Lewis S, Seraphin B, Mattaj IW. Drosophila SNF/D25 combines the functions of the two snRNP proteins U1A and U2B’ that are encoded separately in human, potato, and yeast. RNA 1996;2:11–23.
39. Luo Y, Lin J, Zhang Y, Dai G, Li A, Liu X. LncRNA PCAT6 predicts poor prognosis in hepatocellular carcinoma and promotes proliferation through the regulation of cell cycle arrest and apoptosis. Cell Biochem Funct 2020;38:895–904.
https://doi.org/10.1002/cbf.3510
44. Xu J, Wang Z, Li S, et al. Combinatorial epigenetic regulation of non-coding RNAs has profound effects on oncogenic pathways in breast cancer subtypes. Brief Bioinform 2018;19:52–64.
https://doi.org/10.1093/bib/bbw099