3. Stickland NC, Handel SE. The numbers and types of muscle fibres in large and small breeds of pigs. J Anat 1986;147:181–9.
6. Bharathy N, Ling BMT, Taneja R. Epigenetic regulation of skeletal muscle development and differentiation. Kundu TK, editorEpigenetics: development and disease. Subcellular biochemistry. Dordrecht, The Netherlands: Springer; 2013. p. 139–50.
https://doi.org/10.1007/978-94-007-4525-4_7
9. Oksbjerg N, Gondret F, Vestergaard M. Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system. Domest Anim Endocrinol 2004;27:219–40.
https://doi.org/10.1016/j.domaniend.2004.06.007
10. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 2013;280:4294–314.
https://doi.org/10.1111/febs.12253
13. Cagnazzo M, te Pas MFW, Priem J, et al. Comparison of prenatal muscle tissue expression profiles of two pig breeds differing in muscle characteristics. J Anim Sci 2006;84:1–10.
https://doi.org/10.2527/2006.8411
14. Davoli R, Braglia S, Russo V, Varona L, te Pas MFW. Expression profiling of functional genes in prenatal skeletal muscle tissue in Duroc and Pietrain pigs. J Anim Breed Genet 2011;128:15–27.
https://doi.org/10.1111/j.1439-0388.2010.00867.x
16. Shang P, Wang ZX, Chamba YZ, Zhang B, Zhang H, Wu C. A comparison of prenatal muscle transcriptome and proteome profiles between pigs with divergent growth phenotypes. J Cell Biochem 2019;120:5277–86.
https://doi.org/10.1002/jcb.27802
17. Kolberg L, Raudvere U, Kuzmin I, Vilo J, Peterson H. gprofiler2 -- an R package for gene list functional enrichment analysis and namespace conversion toolset g:profiler. F1000Res 2020;9:709.
https://doi.org/10.12688/f1000research.24956.2
21. Lebrasseur NK, Coté GM, Miller TA, Fielding RA, Sawyer DB. Regulation of neuregulin/ErbB signaling by contractile activity in skeletal muscle. Am J Physiol Cell Physiol 2003;284:C1149–55.
https://doi.org/10.1152/ajpcell.00487.2002
24. Park JW, Lee JH, Han JS, Shin SP, Park TS. Muscle differentiation induced by p53 signaling pathway-related genes in myostatin-knockout quail myoblasts. Mol Biol Rep 2020;47:9531–40.
https://doi.org/10.1007/s11033-020-05935-0
28. Garcia-Guerra L, Vila-Bedmar R, Carrasco-Rando M, et al. Skeletal muscle myogenesis is regulated by G protein-coupled receptor kinase 2. J Mol Cell Biol 2014;6:299–311.
https://doi.org/10.1093/jmcb/mju025
30. Helinska A, Krupa M, Archacka K, et al. Myogenic potential of mouse embryonic stem cells lacking functional Pax7 tested in vitro by 5-azacitidine treatment and in vivo in regenerating skeletal muscle. Eur J Cell Biol 2017;96:47–60.
https://doi.org/10.1016/j.ejcb.2016.12.001
34. Xu M, Chen X, Chen D, Yu B, Huang Z. FoxO1: a novel insight into its molecular mechanisms in the regulation of skeletal muscle differentiation and fiber type specification. Oncotarget 2017;8:10662–74.
https://doi.org/10.18632/oncotarget.12891
35. Zhang L, Zhou Q, Zhang J, et al. Liver transcriptomic and proteomic analyses provide new insight into the pathogenesis of liver fibrosis in mice. Genomics 2023;115:110738.
https://doi.org/10.1016/j.ygeno.2023.110738
39. Rehfeldt C, Te Pas MFW, Wimmers K, et al. Advances in research on the prenatal development of skeletal muscle in animals in relation to the quality of muscle-based food. I. regulation of myogenesis and environmental impact. Animal 2011;5:703–17.
https://doi.org/10.1017/s1751731110002089