2. Nagahama Y, Chakraborty T, Paul-Prasanth B, et al. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol Rev 2021;101:1237–308.
https://doi.org/10.1152/physrev.00044.2019
3. Tevosian SG, Albrecht KH, Crispino JD, Fujiwara Y, Eicher EM, Orkin SH. Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 2002;129:4627–34.
https://doi.org/10.1242/dev.129.19.4627
17. Farzaneh M, Zare M, Hassani SN, Baharvand H. Effects of various culture conditions on pluripotent stem cell derivation from chick embryos. J Cell Biochem 2018;119:6325–36.
https://doi.org/10.1002/jcb.26761
36. Hincke MT, Da Silva M, Guyot N, et al. Dynamics of structural barriers and innate immune components during incubation of the avian egg: critical interplay between autonomous embryonic development and maternal anticipation. J Innate Immun 2019;11:111–24.
https://doi.org/10.1159/000493719
37. Guioli S, Nandi S, Zhao D, Burgess-Shannon J, Lovell-Badge R, Clinton M. Gonadal asymmetry and sex determination in birds. Sex Dev 2014;8:227–42.
https://doi.org/10.1159/000358406
38. Johnson Pokorná M, Kratochvíl L. What was the ancestral sex-determining mechanism in amniote vertebrates? Biol Rev 2016;91:1–12.
https://doi.org/10.1111/brv.12156
40. Baroiller JF, D’Cotta H, Saillant E. Environmental effects on fish sex determination and differentiation. Sex Dev 2009;3:118–35.
https://doi.org/10.1159/000223077
42. Ottolenghi C, Pelosi E, Tran J, et al. Loss of Wnt4 and Foxl2 leads to female-to-male sex reversal extending to germ cells. Hum Mol Genet 2007;16:2795–804.
https://doi.org/10.1093/hmg/ddm235
44. Lambeth LS, Morris K, Ayers KL, et al. Overexpression of anti-Müllerian hormone disrupts gonadal sex differentiation, blocks sex hormone synthesis, and supports cell autonomous sex development in the chicken. Endocrinology 2016;157:1258–75.
https://doi.org/10.1210/en.2015-1571
45. Akashi H, Hasui D, Ueda K, Ishikawa M, Takeda M, Miyagawa S. Understanding the role of environmental temperature on sex determination through comparative studies in reptiles and amphibians. J Exp Zool A Ecol Integr Physiol 2024;341:48–59.
https://doi.org/10.1002/jez.2760
50. Wang FL, Yan LX, Shi HJ, et al. Genome-wide identification, evolution of DNA methyltransferases and their expression during gonadal development in Nile tilapia. Comp Biochem Physiol B Biochem Mol Biol 2018;226:73–84.
https://doi.org/10.1016/j.cbpb.2018.08.007
51. Piferrer F, Anastasiadi D. Do the offspring of sex reversals have higher sensitivity to environmental perturbations? Sex Dev 2021;15:134–47.
https://doi.org/10.1159/000515192
53. Carré GA, Siggers P, Xipolita M, et al. Loss of p300 and CBP disrupts histone acetylation at the mouse Sry promoter and causes XY gonadal sex reversal. Hum Mol Genet 2018;27:190–8.
https://doi.org/10.1093/hmg/ddx398
56. Shioda K, Odajima J, Kobayashi M, et al. Transcriptomic and epigenetic preservation of genetic sex identity in estrogen-feminized male chicken embryonic gonads. Endocrinology 2021;162:bqaa208.
https://doi.org/10.1210/endocr/bqaa208
58. Torner E, Bussalleu E, Briz MD, Yeste M, Bonet S. Energy substrate influences the effect of the timing of the first embryonic cleavage on the development of in vitro-produced porcine embryos in a sex-related manner. Mol Reprod Dev 2013;80:924–35.
https://doi.org/10.1002/mrd.22229
59. Zhang Q, Ren J, Wang F, et al. Mitochondrial and glucose metabolic dysfunctions in granulosa cells induce impaired oocytes of polycystic ovary syndrome through Sirtuin 3. Free Radic Biol Med 2022;187:1–16.
https://doi.org/10.1016/j.freeradbiomed.2022.05.010
64. Liu F, Jin S, Li N, Liu X, Wang H, Li J. Comparative and functional analysis of testis-specific genes. Biol Pharm Bull 2011;34:28–35.
https://doi.org/10.1248/bpb.34.28
66. Hayashi Y, Mori M, Igarashi K, et al. Proteomic and metabolomic analyses uncover sex-specific regulatory pathways in mouse fetal germline differentiation. Biol Reprod 2020;103:717–35.
https://doi.org/10.1093/biolre/ioaa115