2. Mohammadalipour R, Rahmani HR, Jahanian R, Riasi A, Mohammadalipour M, Nili N. Effect of early feed restriction on physiological responses, performance and ascites incidence in broiler chickens raised in normal or cold environment. Animal 2017;11:219–26.
https://doi.org/10.1017/S1751731116001555
3. Nord A, Hegemann A, Folkow LP. Reduced immune responsiveness contributes to winter energy conservation in an Arctic bird. J Exp Biol. 2020. 223:jeb219287
https://doi.org/10.1242/jeb.219287
4. Li C, Peng M, Liao M, et al. Effects of N-acetylcysteine on the energy status and antioxidant capacity in heart and liver of cold-stressed broilers. Asian-Australas J Anim Sci 2020;33:1444–54.
https://doi.org/10.5713/ajas.19.0542
7. Feng JH, Sim SM, Park JS, Hong JS, Suh H. Modulation of corticosterone and changes of signal molecules in the HPA axis after cold water swimming stress. Anim Cells Syst 2021;25:37–45.
https://doi.org/10.1080/19768354.2021.1890211
8. Yau WW, Singh BK, Lesmana R, et al. Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy 2019;15:131–50.
https://doi.org/10.1080/15548627.2018.1511263
13. Dai J, Wang H, Liao Y, et al. RNA-seq and LC-MS/MS analysis of antiviral effects mediated by cold stress and stress hormone corticosterone in chicken DF-1 cells. Vet Microbiol 2022;275:109580.
https://doi.org/10.1016/j.vetmic.2022.109580
15. Wei H, Zhang Y, Li T, et al. Intermittent mild cold stimulation alleviates cold stress-induced pulmonary fibrosis by inhibiting the TGF-β1/Smad signaling pathway in broilers. Poult Sci 2024;103:103246.
https://doi.org/10.1016/j.psj.2023.103246
16. Li T, Wei H, Zhang S, et al. Intermittent cold stimulation affects energy metabolism and improves stress resistance in broiler heart. Poult Sci 2024;103:103190.
https://doi.org/10.1016/j.psj.2023.103190
18. Dong HW, Zhang LF, Bao SL. AMPK regulates energy metabolism through the SIRT1 signaling pathway to improve myocardial hypertrophy. Eur Rev Med Pharmacol Sci 2018;22:2757–66.
https://doi.org/10.26355/eurrev_201805_14973
19. Hoarau M, Angelier F, Touzalin F, Zgirski T, Parenteau C, Legagneux P. Corticosterone: foraging and fattening puppet master in pre-breeding greylag geese. Physiol Behav 2022;246:113666.
https://doi.org/10.1016/j.physbeh.2021.113666
20. Rial-Pensado E, Canaple L, Guyot R, et al. Neuronal blockade of thyroid hormone signaling increases sensitivity to diet-induced obesity in adult male mice. Endocrinology. 2023. 164:bqad034
https://doi.org/10.1210/endocr/bqad034
22. Wen J, Qiao QG, Zhao ZJ, et al. Effects of thyroid hormones and cold acclimation on the energy metabolism of the striped hamster (Cricetulus barabensis). J Comp Physiol B 2019;189:153–65.
https://doi.org/10.1007/s00360-018-1197-7
25. Li FH, Huang XL, Wang H, Guo SW, Li P. Protective effect of Yi-Qi-Huo-Xue Decoction against ischemic heart disease by regulating cardiac lipid metabolism. Chin J Nat Med 2020;18:779–92.
https://doi.org/10.1016/S1875-5364(20)60018-8
33. Yang SM, Park YK, Kim JI, Lee YH, Lee TY, Jang BC. LY3009120, a pan-Raf kinase inhibitor, inhibits adipogenesis of 3T3-L1 cells by controlling the expression and phosphorylation of C/EBP-α, PPAR-γ, STAT-3, FAS, ACC, perilipin A, and AMPK. Int J Mol Med 2018;42:3477–84.
https://doi.org/10.3892/ijmm.2018.3890
38. Takano AP, Diniz GP, Barreto-Chaves ML. AMPK signaling pathway is rapidly activated by T3 and regulates the cardiomyocyte growth. Mol Cell Endocrinol 2013;376:43–50.
https://doi.org/10.1016/j.mce.2013.05.024
39. Liu L, Wang X, Jiao H, Lin H. Glucocorticoids induced high fat diet preference via activating hypothalamic AMPK signaling in chicks. Gen Comp Endocrinol 2017;249:40–7.
https://doi.org/10.1016/j.ygcen.2017.02.018