1. USDA. United States standards for grades of slaughter cattle. Washington, DC, USA: USDA; 1996.
5. KAPE. 2022 Livestock products distribution information survey report. Sejong, Korea: Institute for Animal Products Quality Evaluation; 2023. No 11-B552679-000003-10
6. MAFRA. Statistical yearbook of agriculture, food and rural affairs. Sejong, Korea: Ministry of Agriculture, Food and Rural Affairs; 2023. No. 11-1543000-000261-10
7. MAFRA. Statistical yearbook of agriculture, food and rural affairs. Sejong, Korea: Ministry of Agriculture, Food and Rural Affairs; 2017. No. 11-1543000-000261-10
8. KAPE. 2014. Livestock product distribution status. Gunpo, Korea: Institute for Animal Products Quality Evaluation; 2014. No. 11-B552679-000003-10
9. Yongcheol K. Fundamental measures must be taken to address the problem of excessive pork belly intramuscular fat. Meat J 2023;374:54–7.
11. Jeong BG. Direction of government support for farmers producing standard pigs. Korea Swine J 1998;20:118–20.
12. Ministry of Agriculture, Food and Rural Affairs (MAFRA). Detailed criteria for livestock product grading, Amendment No. 2023-102. Sejong, Korea: MAFRA; 2023.
14. Haneul P. Korean pork industry spurs premiumization strategy... Pork grading system supplementation ‘starts’2023. Seoul, Korea: Nongmin News Corp; c2023. [cited 2024 May 3]. Available from:
https://www.nongmin.com/article/20230202500238
16. Kim GT, Kang SJ, Yoon YG, Kim HS, Lee WY, Yoon SH. Introduction of automatic grading and classification machine and operation status in Korea. Korean Soc Food Sci Anim Resour 2017;6:34–45.
20. Tang J, Wang D, Zhang Z, He L, Xin J, Xu Y. Weed identification based on k-means feature learning combined with convolutional neural network. Comput Electron Agric 2017;135:63–70.
https://doi.org/10.1016/j.compag.2017.01.001
21. Bansal A, Sharma M, Goel S. Improved k-mean clustering algorithm for prediction analysis using classification technique in data mining. Int J Comput Appl 2017;157:35–40.
https://doi.org/10.5120/ijca2017912719
22. Géron A. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. Sebastopol, CA, USA: O’Reilly Media, Inc; 2022.
23. McKinney W. Data structures for statistical computing in Python. In : SciPy 2010: Proceedings of the 9th Python in Science Conference; 2010 Jun 28 – Jul 3; Austin, TX, USA. p. 56–61.
https://doi.org/10.25080/Majora-92bf1922-00a
25. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res 2011;12:2825–30.
27. Seabold S, Perktold J. Statsmodels: econometric and statistical modeling with python. In : SciPy 2010: Proceedings of the 9th Python in Science Conference; 2010 Jun 28 – Jul 3; Austin, TX, USA. p. 92–6.
https://doi.org/10.25080/Majora-92bf1922-011
28. KAPE. 2021 Animal products grading statistical yearbook. Sejong, Korea: Institute for Animal Products Quality Evaluation; 2022. No. 11-B552679-000006-10
30. Hutagalung J, Ginantra NLWSR, Bhawika GW, Parwita WGS, Wanto A, Panjaitan PD. Covid-19 cases and deaths in southeast Asia clustering using k-means algorithm. J Phys Conf Ser 2021;1783:012027.
https://doi.org/10.1088/1742-6596/1783/1/012027
32. Irawan Y. Implementation of data mining for determining majors using k-means algorithm in students of sma negeri 1 pangkalan kerinci. J Appl Eng Technol Sci 2019;1:17–29.
https://doi.org/10.37385/jaets.v1i1.18
34. KAPE. 2022 Animal Products Grading Statistical Yearbook. Sejong, Korea: Institute for Animal Products Quality Evaluation; 2023. No. 11-B552679-000006-10
37. Willmott CJ, Matsuura K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 2005;30:79–82.
https://doi.org/10.3354/cr030079