2. Li H, Geng W, Haruna SA, et al. Identification of characteristic volatiles and metabolomic pathway during pork storage using HS-SPME-GC/MS coupled with multivariate analysis. Food Chem 2022;373:131431.
https://doi.org/10.1016/j.foodchem.2021.131431
6. Fan N, Ma X, Liu G, Ban J, Yuan R, Sun Y. Rapid determination of TBARS content by hyperspectral imaging for evaluating lipid oxidation in mutton. J Food Compost Anal 2021;103:104110.
https://doi.org/10.1016/j.jfca.2021.104110
8. Lee HJ, Kwon JA, Kim M, Lee YE, Ryu M, Jo C. Effect of supercooling on storage ability of different beef cuts in comparison to traditional storage methods. Meat Sci 2023;199:109137.
https://doi.org/10.1016/j.meatsci.2023.109137
11. Li H, Chen Q, Zhao J, Wu M. Nondestructive detection of total volatile basic nitrogen (TVB-N) content in pork meat by integrating hyperspectral imaging and colorimetric sensor combined with a nonlinear data fusion. LWT-Food Sci Technol 2015;63:268–74.
https://doi.org/10.1016/j.lwt.2015.03.052
12. Ismail A, Yim DG, Kim G, Jo C. Hyperspectral imaging coupled with multivariate analyses for efficient prediction of chemical, biological and physical properties of seafood products. Food Eng Rev 2023;15:41–55.
https://doi.org/10.1007/s12393-022-09327-x
13. Ma J, Sun D-W, Nicolai B, et al. Comparison of spectral properties of three hyperspectral imaging (HSI) sensors in evaluating main chemical compositions of cured pork. J Food Eng 2019;261:100–8.
https://doi.org/10.1016/j.jfoodeng.2019.05.024
15. Park S, Yang M, Yim DG, Jo C, Kim G. VIS/NIR hyperspectral imaging with artificial neural networks to evaluate the content of thiobarbituric acid reactive substances in beef muscle. J Food Eng 2023;350:111500.
https://doi.org/10.1016/j.jfoodeng.2023.111500
16. Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L. Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 2004;5:763–9.
https://doi.org/10.1038/nrm1451
17. Tamura Y, Iwatoh S, Miyaura K, Asikin Y, Kusano M. Metabolomic profiling reveals the relationship between taste-related metabolites and roasted aroma in aged pork. LWT 2022;155:112928.
https://doi.org/10.1016/j.lwt.2021.112928
19. Ismail A, Lee HJ, Hong S-J, Kim G, Choi M, Jo C. Evaluation of plasma-activated lactic-gallic acid treated chicken meats on the freshness, volatile changes, and metabolites through multi-analytical techniques. Innov Food Sci Emerg Technol 2024;91:103544.
https://doi.org/10.1016/j.ifset.2023.103544
25. Lee D, Lee H, Nam K, et al. Metabolomic approach to understand the effect of lairage on the quality of pork loin. Meat Muscle Biol 2023;7:1–13.
https://doi.org/10.22175/mmb.16898
28. Grobério TS, Zacca JJ, Botelho ÉD, Talhavini M, Braga JWB. Discrimination and quantification of cocaine and adulterants in seized drug samples by infrared spectroscopy and PLSR. Forensic Sci Int 2015;257:297–306.
https://doi.org/10.1016/j.forsciint.2015.09.012
30. Chen Q, Zhao J, Liu M, Cai J, Liu J. Determination of total polyphenols content in green tea using FT-NIR spectroscopy and different PLS algorithms. J Pharm Biomed Anal 2008;46:568–73.
https://doi.org/10.1016/j.jpba.2007.10.031
31. Jiang H, Jiang X, Ru Y, Wang J, Xu L, Zhou H. Application of hyperspectral imaging for detecting and visualizing leaf lard adulteration in minced pork. Infrared Phys Technol 2020;110:103467.
https://doi.org/10.1016/j.infrared.2020.103467
33. Luo X, Sun Q, Zhou L, He K, Gao X, Tang X. Non-destructive measurements for the evaluation of beef freshness based on airflow interaction and a structured light 3D imaging technique and comparison with pH value and total volatile basic nitrogen content. Biosyst Eng 2023;226:182–93.
https://doi.org/10.1016/j.biosystemseng.2023.01.006
34. Schulte MD, Johnson LG, Zuber EA, et al. Influence of postmortem aging and post-aging freezing on pork loin quality attributes. Meat Muscle Biol 2019;3:313.
https://doi.org/10.22175/mmb2019.05.0015
40. Berson DS, Osborne R, Oblong JE, Hakozaki T, Johnson MB, Bissett DL. Niacinamide. Patricia K, Farris MD, editorsCosmeceuticals and Cosmetic Practice. Chichester, UK: John Wiley & Sons, Ltd; 2013. p. 103–12.
https://doi.org/10.1002/9781118384824.ch10
44. Jin S, Liu X, Wang J, et al. Hyperspectral imaging combined with fluorescence for the prediction of microbial growth in chicken breasts under different packaging conditions. LWT 2023;181:114727.
https://doi.org/10.1016/j.lwt.2023.114727
45. Xiong Z, Sun DW, Xie A, Pu H, Han Z, Luo M. Quantitative determination of total pigments in red meats using hyperspectral imaging and multivariate analysis. Food Chem 2015;178:339–45.
https://doi.org/10.1016/j.foodchem.2015.01.071
46. Dixit Y, Hitchman S, Hicks TM, et al. Non-invasive spectroscopic and imaging systems for prediction of beef quality in a meat processing pilot plant. Meat Sci 2021;181:108410.
https://doi.org/10.1016/j.meatsci.2020.108410
48. Feng YZ, Sun DW. “Seeing the bacteria”: hyperspectral imaging for bacterial prediction and visualisation on chicken meat”. NIR news 2014;25:4–6.
https://doi.org/10.1255/nirn.1479
49. Cao QQ, Lin LX, Xu TT, et al. Aflatoxin B1 alters meat quality associated with oxidative stress, inflammation, and gut-microbiota in sheep. Ecotoxicol Environ Saf 2021;225:112754.
https://doi.org/10.1016/j.ecoenv.2021.112754