1. Chaytor AC, Hansen JA, van Heugten E, See MT, Kim SW. Occurrence and decontamination of mycotoxins in swine feed. Asian-Australas J Anim Sci 2011;24:723–38.e.
https://doi.org/10.5713/ajas.2011.10358
3. Schaafsma AW, Limay-Rios V, Paul DE, Miller JD. Mycotoxins in fuel ethanol co-products derived from maize: a mass balance for deoxynivalenol. J Sci Food Agric 2009;89:1574–80.
https://doi.org/10.1002/jsfa.3626
5. Holanda DM, Kim SW. Investigation of the efficacy of mycotoxin-detoxifying additive on health and growth of newly-weaned pigs under deoxynivalenol challenges. Anim Biosci 2021;34:405–16.
https://doi.org/10.5713/ajas.20.0567
8. Andretta I, Kipper M, Lehnen CR, Hauschild L, Vale MM, Lovatto PA. Meta-analytical study of productive and nutritional interactions of mycotoxins in growing pigs. Animal 2012;6:1476–82.
https://doi.org/10.1017/S1751731111002278
12. Goyarts T, Dänicke S, Valenta H, Ueberschär KH. Carry-over of Fusarium toxins (deoxynivalenol and zearalenone) from naturally contaminated wheat to pigs. Food Addit Contam 2007;24:369–80.
https://doi.org/10.1080/02652030600988038
13. Kim BG, Lindemann MD. A new spreadsheet method for the experimental animal allotment. J Anim Sci 2007;85:Suppl 2112(Abstr.).
14. NRC. Nutrient Requirements of Swine. 11th edWashington, DC, USA: National Academy Press; 2012.
15. Choi H, Ji SY, Jo H, Song M, Kim BG. Excessive dietary lead reduces growth performance and increases lead accumulation in pigs. Anim Biosci 2021;34:102–8.
https://doi.org/10.5713/ajas.20.0220
17. AOAC. Official methods of analysis. 19th edGaithersburg, MD, USA: Association of Official Analytical Chemists Internatioanl; 2012.
18. Ashoka S, Peake BM, Bremner G, Hageman KJ, Reid MR. Comparison of digestion methods for ICP-MS determination of trace elements in fish tissues. Anal Chim Acta 2009;653:191–9.
https://doi.org/10.1016/j.aca.2009.09.025
19. Van Le Thanh B, Lessard M, Chorfi Y, Guay F. The efficacy of anti-mycotoxin feed additives in preventing the adverse effects of wheat naturally contaminated with Fusarium mycotoxins on performance, intestinal barrier function and nutrient digestibility and retention in weanling pigs. Can J Anim Sci 2015;95:197–209.
https://doi.org/10.4141/cjas-2014-126
21. Chaytor AC, See MT, Hansen JA, de Souza ALP, Middleton TF, Kim SW. Effects of chronic exposure of diets with reduced concentrations of aflatoxin and deoxynivalenol on growth and immune status of pigs. J Anim Sci 2011;89:124–35.
https://doi.org/10.2527/jas.2010-3005
22. Dersjant-Li Y, Verstegen MWA, Gerrits WJJ. The impact of low concentrations of aflatoxin, deoxynivalenol or fumonisin in diets on growing pigs and poultry. Nutr Res Rev 2003;16:223–39.
https://doi.org/10.1079/NRR200368
23. Swamy HVLN, Smith TK, MacDonald EJ, Boermans HJ, Squires EJ. Effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on swine performance, brain regional neurochemistry, and serum chemistry and the efficacy of a polymeric glucomannan mycotoxin adsorbent. J Anim Sci 2002;80:3257–67.
https://doi.org/10.2527/2002.80123257x
24. Frobose HL, Erceg JA, Fowler SQ, et al. The progression of deoxynivalenol-induced growth suppression in nursery pigs and the potential of an algae-modified montmorillonite clay to mitigate these effects. J Anim Sci 2016;94:3746–59.
https://doi.org/10.2527/jas.2016-0663
25. Prelusky DB, Gerdes RG, Underhill KL, Rotter BA, Jui PY, Trenholm HL. Effects of low-level dietary deoxynivalenol on haematological and clinical parameters of the pig. Nat Toxins 1994;2:97–104.
https://doi.org/10.1002/nt.2620020302
26. Goyarts T, Dänicke S, Rothkötter HJ, Spilke J, Tiemann U, Schollenberger M. On the effects of a chronic deoxynivalenol intoxication on performance, haematological and serum parameters of pigs when diets are offered either for ad libitum consumption or fed restrictively. J Vet Med A Physiol Pathol Clin Med 2005;52:305–14.
https://doi.org/10.1111/j.1439-0442.2005.00734.x
29. Grenier B, Loureiro-Bracarense AP, Lucioli J, et al. Individual and combined effects of subclinical doses of deoxynivalenol and fumonisins in piglets. Mol Nutr Food Res 2011;55:761–71.
https://doi.org/10.1002/mnfr.201000402
30. Mishra S, Srivastava S, Dewangan J, Divakar A, Kumar Rath S. Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: a survey. Crit Rev Food Sci Nutr 2022;60:1346–74.
https://doi.org/10.1080/10408398.2019.1571479
31. WHO. Evaluation of certain contaminants in food: eighty-third report of the joint FAO/WHO expert committee on food additives. 1st edGeneva, Switzerland: World Health Organization; 2017.
32. Forsell JH, Witt MF, Tai JH, Jensen R, Pestka JJ. Effects of 8-week exposure of the B6C3F1 mouse to dietary deoxynivalenol (vomitoxin) and zearalenone. Food Chem Toxicol 1986;24:213–9.
https://doi.org/10.1016/0278-6915(86)90231-0
33. Bergsjø B, Langseth W, Nafstad I, Jansen JH, Larsen HJS. The effects of naturally deoxynivalenol-contaminated oats on the clinical condition, blood parameters, performance and carcass composition of growing pigs. Vet Res Commun 1993;17:283–94.
https://doi.org/10.1007/BF01839219
34. Goyarts T, Dänicke S, Tiemann U, Rothkötter HJ. Effect of the Fusarium toxin deoxynivalenol (DON) on IgA, IgM and IgG concentrations and proliferation of porcine blood lymphocytes. Toxicol In Vitro 2006;20:858–67.
https://doi.org/10.1016/j.tiv.2005.12.006