1. Mueller JP, Getachew T, Rekik M, et al. Converting multi-trait breeding objectives into operative selection indexes to ensure genetic gains in low-input sheep and goat breeding programmes. Animal 2021;15:100198.
https://doi.org/10.1016/j.animal.2021.100198
2. Leite JHGM, Da Silva RG, Asensio LAB, et al. Coat color and morphological hair traits influence on the mechanisms related to the heat tolerance in hair sheep. Int J Biometeorol 2020;64:2185–94.
https://doi.org/10.1007/s00484-020-02014-8
3. Yuxing Z, Hong W, Li Y. Progress on coat color regulation mechanism and its association with the adaptive evolution in mammals. Yi chuan 2021;43:118–33.
https://doi.org/10.16288/j.yczz.20-390
6. Våge DI, Klungland H, Lu D, Cone RD. Molecular and pharmacological characterization of dominant black coat color in sheep. Mamm Genome 1999;10:39–43.
https://doi.org/10.1007/s003359900939
13. Lv QZ, Zhang XL, Gao L, Yan L, Jiang YY. iTRAQ-based proteomics revealed baicalein enhanced oxidative stress of Candida albicans by upregulating CPD2 expression. Med Mycol 2022;60:myac053.
https://doi.org/10.1093/mmy/myac053
14. Wu J, Liu H, Wang H, et al. iTRAQ-based quantitative proteomic analysis of the liver regeneration termination phase after partial hepatectomy in mice. J Proteomics 2022;267:104688.
https://doi.org/10.1016/j.jprot.2022.104688
15. Xu Y, Zhou C, Li J, Xu Y, He F. iTRAQ-based proteomic analysis reveals potential osteogenesis-promoted role of ATM in strontium-incorporated titanium implant. J Biomed Mater Res A 2022;110:964–75.
https://doi.org/10.1002/jbm.a.37345
16. Dong M, Gu J, Zhang L, et al. Comparative proteomics analysis of superior and inferior spikelets in hybrid rice during grain filling and response of inferior spikelets to drought stress using isobaric tags for relative and absolute quantification. J Proteomics 2014;109:382–99.
https://doi.org/10.1016/j.jprot.2014.07.001
21. Deng WD, Xi DM, Gou X, Yang SL, Shi XW, Mao HM. Pigmentation in black-boned sheep (Ovis aries): association with polymorphism of the tyrosinase gene. Mol Biol Rep 2008;35:379–85.
https://doi.org/10.1007/s11033-007-9097-z
23. Pang Y, Geng J, Qin Y, et al. Endothelin-1 increases melanin synthesis in an established sheep skin melanocyte culture. In Vitro Cell Dev Biol Anim 2016;52:749–56.
https://doi.org/10.1007/s11626-016-0042-0
24. Yan SQ, Bai CY, Qi SM, et al. Cloning and association analysis of KIT and EDNRB polymorphisms with dominant white coat color in the Chinese raccoon dog (Nyctereutes procyonoides procyonoides). Genet Mol Res 2015;14:6549–54.
https://doi.org/10.4238/2015.June.12.8
25. Chassepot A, Ball V. Human serum albumin and other proteins as templating agents for the synthesis of nanosized dopamine-eumelanin. J Colloid Interface Sci 2014;414:97–102.
https://doi.org/10.1016/j.jcis.2013.10.002
27. Schneider M, Dieckmann C, Rabe K, Simon JC, Savkovic V. Differentiating the stem cell pool of human hair follicle outer root sheath into functional melanocytes. Kioussi C, editorStem cells and tissue repair. Methods in molecular biology. New York, USA: Humana Press; 2014. p. 203–27.
https://doi.org/10.1007/978-1-4939-1435-7_16
32. Moss KG, Toner GC, Cherrington JM, Mendel DB, Laird AD. Hair depigmentation is a biological readout for pharmacological inhibition of KIT in mice and humans. J Pharmacol Exp Ther 2003;307:476–80.
https://doi.org/10.1124/jpet.103.052530
34. Yin SJ, Lee JR, Hahn MJ, Yang JM, Qian GY, Park YD. Tyrosinase-mediated melanogenesis in melanoma cells: array comparative genome hybridization integrating proteomics and bioinformatics studies. Int J Biol Macromol 2021;170:150–63.
https://doi.org/10.1016/j.ijbiomac.2020.12.146