1. Myhre G, Shindell D, Bréon FM, et al. Anthropogenic and natural radiative forcing. Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, SA: Cambridge University Press; 2013.
3. Gerber PJ, Steinfeld H, Henderson B, et al. Tackling climate change through livestock—A global assessment of emissions and mitigation opportunities. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO); 2013.
4. Shibata M, Terada F, Iwasaki K, Kurihara M, Nishida T. Methane production in heifers, sheep and goats consuming diets of various hay-concentrate ratios. Anim Sci Technol 1992;63:1221–7.
5. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C. Livestock’s long shadow: Environmental issues and options. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO); 2006.
9. Strandén I, Kantanen J, Lidauer MH, Mehtiö T, Negussie E. Animal board invited review: Genomic-based improvement of cattle in response to climate change. Animal 2022;16:100673.
https://doi.org/10.1016/j.animal.2022.100673
10. Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J Dairy Sci 2014;97:3231–61.
https://doi.org/10.3168/jds.2013-7234
11. Madsen J, Bjerg BS, Hvelplund T, Weisbjerg MR, Lund P. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants. Livest Sci 2010;129:223–7.
https://doi.org/10.1016/j.livsci.2010.01.001
12. Garnsworthy PC, Craigon J, Hernandez-Medrano JH, Saunders N. On-farm methane measurements during milking correlate with total methane production by individual dairy cows. J Dairy Sci 2012;95:3166–80.
https://doi.org/10.3168/jds.2011-4605
13. Lassen J, Løvendahl P, Madsen J. Accuracy of noninvasive breath methane measurements using Fourier transform infrared methods on individual cows. J Dairy Sci 2012;95:890–8.
https://doi.org/10.3168/jds.2011-4544
14. Oikawa K, Kamiya Y, Terada F, Suzuki T. The influence of breath concentration in the gas sample on the accuracy of methane to carbon dioxide ratio using the sniffer method in dairy cows. Anim Sci J 2022;93:e13745.
https://doi.org/10.1111/asj.13745
17. de Haas Y, Pszczola M, Soyeurt H, Wall E, Lassen J. Invited review: Phenotypes to genetically reduce greenhouse gas emissions in dairying. J Dairy Sci 2017;100:855–70.
https://doi.org/10.3168/jds.2016-11246
19. Richardson CM, Nguyen TTT, Abdelsayed M, et al. Genetic parameters for methane emission traits in Australian dairy cows. J Dairy Sci 2021;104:539–49.
https://doi.org/10.3168/jds.2020-18565
20. Gilmour AR, Gogel BJ, Cullis BR, Welham S, Thompson R. ASReml user guide release 4.1 structural specification. Hemel Hempstead, UK: VSN International, Ltd; 2015.
21. de Haas Y, Windig JJ, Calus MPL, et al. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. J Dairy Sci 2011;94:6122–34.
https://doi.org/10.3168/jds.2011-4439
22. Pickering NK, Chagunda MGG, Banos G, Mrode R, McEwan JC, Wall E. Genetic parameters for predicted methane production and laser methane detector measurements. J Anim Sci 2015;93:11–20.
https://doi.org/10.2527/jas.2014-8302
23. Yin T, Pinent T, Brügemann K, Simianer H, König S. Simulation, prediction, and genetic analyses of daily methane emissions in dairy cattle. J Dairy Sci 2015;98:5748–62.
https://doi.org/10.3168/jds.2014-8618
24. van Engelen S, Bovenhuis H, Dijkstra J, Van Arendonk JAM, Visker MHPW. Genetic study of methane production predicted from milk fat composition in dairy cows. J Dairy Sci 2015;98:8223–6.
https://doi.org/10.3168/jds.2014-8989
25. Kandel PB, Vanrobays ML, Vanlierde A, et al. Genetic parameters of mid-infrared methane predictions and their relationships with milk production traits in Holstein cattle. J Dairy Sci 2017;100:5578–91.
https://doi.org/10.3168/jds.2016-11954
27. Olijhoek DW, Difford GF, Lund P, Løvendahl P. Phenotypic modeling of residual feed intake using physical activity and methane production as energy sinks. J Dairy Sci 2020;103:6967–81.
https://doi.org/10.3168/jds.2019-17489
29. van Breukelen AE, Aldridge MA, Veerkamp RF, de Haas Y. Genetic parameters for repeatedly recorded enteric methane concentrations of dairy cows. J Dairy Sci 2022;105:4256–71.
https://doi.org/10.3168/jds.2021-21420
30. Pedersen S, Blanes-Vidal V, Jørgensen H, et al. Carbon dioxide production in animal houses: a literature review. Agricultural Engineering International 2008;8:1–19.
31. Huhtanen P, Cabezas-Garcia EH, Utsumi S, Zimmerman S. Comparison of methods to determine methane emissions from dairy cows in farm conditions. J Dairy Sci 2015;98:3394–409.
https://doi.org/10.3168/jds.2014-9118
32. van Engelen S, Bovenhuis H, Van der Tol PPJ, Visker MHPW. Genetic background of methane emission by Dutch Holstein Friesian cows measured with infrared sensors in automatic milking systems. J Dairy Sci 2018;101:2226–34.
https://doi.org/10.3168/jds.2017-13441
33. Manzanilla-Pech CIV, Lovendahl P, Gordo DM, et al. Breeding for reduced methane emission and feed-efficient Holstein cows: An international response. J Dairy Sci 2021;104:8983–9001.
https://doi.org/10.3168/jds.2020-19889
34. Falconer DS. Introduction to quantitative genetics. 4th edHarlow, Essex, UK: Longmans Green; 1996.