1. Bowling MB, Pendell DL, Morris DL, et al. Identification and traceability of cattle in selected countries outside of North America. Pro Anim Sci 2008;24:287–94.
3. Gosalvez LF, Santamarina C, Averos X, Hernandez-Jover M, Caja G, Babot D. Traceability of extensively produced Iberian pigs using visual and electronic identification devices from farm to slaughter. J Anim Sci 2007;85:2746–52.
https://doi.org/10.2527/jas.2007-0173
5. Sahin E, Dallery Y, Gershwin S. Performance evaluation of a traceability system. IEEE T Syst Man Cy B 2002;3:210–8.
7. Allen A, Golden B, Taylor M, Patterson D, Henriksen D, Skuce R. Evaluation of retinal imaging technology for the biometric identification of bovine animals in Northern Ireland. Livest Sci 2008;116:42–52.
https://doi.org/10.1016/j.livsci.2007.08.018
8. Barry B, Gonzales-Barron UA, Mcdonnell K, Butler F, Ward S. Using muzzle pattern recognition as a biometric approach for cattle identification. Trans ASABE 2007;50:1073–80.
https://doi.org/10.13031/2013.23121
9. Corkery GP, Gonzales-Barron UA, Butler F, McDennell K, Ward S. A preliminary investigation on face recognition as a biometric identifier of sheep. Trans ASABE 2007;50:313–20.
https://doi.org/10.13031/2013.22395
10. Daugman J. How iris recognition works. In : Proceedings of International Conference on Image Processing 1; 2002 Sept 22–5; Rochester, NY, USA.
11. Musgrave C, Cambier JL. System andmethod of animal identification and animal transaction authorization using iris pattern. Moorestown, NJ, USA: Iridian Technologies, Inc; 2002. US Patent. 6424727
14. Zhang M, Zhao L. An iris localization algorithm based on geometrical features of cow eyes. In : Proc. SPIE 7495, MIPPR 2009: Automatic Target Recognition and Image Analysis, 749517; 30 October 2009;
https://doi.org/10.1117/12.832494
17. Roy S, Dan S, Mukherjee K, et al. Black Bengal Goat Identification using Iris Images. Pro Int Con Front Com Sys 2020. p. 213–24. Bhattacharjee D, Kole DK, Dey N, Basu S, Plewczynski D, editorsProceedings of International Conference on Frontiers in Computing and Systems. Advances in Intelligent Systems and Computing2022. 1255:Springer; Singapore:
https://doi.org/10.1007/978-981-15-7834-2_20
21. Nielsen MA. Neural networks and deep learning. 25:San Francisco, CA, USA: Determination Press; 2015.
22. Apostolidis K, Amanatidis P, Papakostas G. Performance evaluation of convolutional neural networks for gait recognition. In : 24th Pan-Hellenic Conference on Informatics; 2020; p. 61–3.
23. Hwooi SKW, Loo CK, Sabri AQM. Emotion differentiation based on arousal intensity estimation from facial expressions. Information science and applications. Singapore: Springer; 2020. p. 249–57.
24. Masek L. Recognition of human iris patterns for biometric identification [master’s thesis]. Crawley, WA, Australia: School of Computer Science and Software Engineering, the University of Western Australia; 2003.
29. Mandal SN, Ghosh P, Mukherjee K, et al. InceptGI: a convnet-based classification model for identifying goat breeds in India. J Inst Eng India Ser B 2020;101:573–84.
https://doi.org/10.1007/s40031-020-00471-8
34. Jayanthi J, Lydia EL, Krishnaraj N, Jayasankar T, Babu RL, Suji RA. An effective deep learning features based integrated framework for iris detection and recognition. J Ambient Intell Humaniz Comput 2020;12:3271–81.
https://doi.org/10.1007/s12652-020-02172-y
35. Daugman JG. High confidence visual recognition of persons by a test of statistical independence. IEEE Trans Pattern Anal Mach Intell 1993;15:1148–61.
https://doi.org/10.1109/34.244676