4. Paillat J-M, Robin P, Hassouna M, Leterme P. Predicting ammonia and carbon dioxide emissions from carbon and nitrogen biodegradability during animal waste composting. Atmos Environ 2005;39:6833–42.
https://doi.org/10.1016/j.atmosenv.2005.07.045
8. Hayashida S, Choi MY, Nanri N, Yokoyama M, Uematsu T. Control of potato common scab with an antibiotic biofertilizer produced from swine feces containing Streptomyces albidoflavus CH-33. Agric Biol Chem 1989;53:349–54.
https://doi.org/10.1080/00021369.1989.10869326
10. Nakasaki K, Araya S, Mimoto H. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting. Bioresour Technol 2013;144:521–8.
https://doi.org/10.1016/j.biortech.2013.07.005
11. Monteny GJ, Hartung J, editorsAmmonia emissions in agriculture. Wageningen, The Netherlands: Wageningen Academic Publishers; 2007.
12. Kuroda K, Hanajima D, Fukumoto Y, et al. Isolation of thermophilic ammonium-tolerant bacterium and its application to reduce ammonia emission during composting of animal wastes. Biosci Biotechnol Biochem 2004;68:286–92.
https://doi.org/10.1271/bbb.68.286
13. Kuroda K, Waki M, Yasuda T, Fukumoto Y, Tanaka A, Nakasaki K. Utilization of Bacillus sp. strain TAT105 as a biological additive to reduce ammonia emissions during composting of swine feces. Biosci Biotechnol Biochem 2015;79:1702–11.
https://doi.org/10.1080/09168451.2015.1042831
14. Kuroda K, Tanaka A, Furuhashi K, Nakasaki K. Application of Bacillus sp. TAT105 to reduce ammonia emissions during pilot-scale composting of swine manure. Biosci Biotechnol Biochem 2017;81:2400–6.
https://doi.org/10.1080/09168451.2017.1389607
17. Hamamoto M. Extraction and purification of yeast DNA of ascomycetous yeast which generates extracellular polysaccharide (in Japanese). Microbiol Cult Coll 1994;10:116–8.
18. Kawamura Y. Phylogenetic classification and identification of bacteria (in Japanese). Nippon Saikingaku Zassi (Japanese Journal of Bacteriology) 2000;55:545–84.
https://doi.org/10.3412/jsb.55.545
19. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–9.
https://doi.org/10.1099/00207713-39-3-224
20. Lane DJ. 16S/23S rRNA sequencing. Stackebrandt E, Goodfellow M, editorsNucleic acid techniques in bacterial systematics (Modern Microbiological Methods). Hoboken, NJ, USA: John Wiley & Son Ltd; 1991. p. 115–75.
21. Coorevits A, Logan NA, Dinsdale AE, et al. Bacillus thermolactis sp. nov., isolated from dairy farms, and emended description of Bacillus thermoamylovorans. Int J Syst Evol Microbiol 2011;61:1954–61.
https://doi.org/10.1099/ijs.0.024240-0
22. Poudel P, Miyamoto H, Miyamoto H, Okugawa Y, Tashiro Y, Sakai K. Thermotolerant Bacillus kokeshiiformis sp. Nov. isolated from marine animal resources compost. Int J Syst Evol Microbiol 2014;64:2668–74.
https://doi.org/10.1099/ijs.0.059329-0
23. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–5.
24. Wayne LG, Brenner DJ, Colwell RR, et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–4.
https://doi.org/10.1099/00207713-37-4-463
26. Haga K. Recent progress in researchers on swine waste management (In Japanese). Bulletin of National Institute of Animal Industry 2001;60:1–20.