1. Collins KE, Kiepper BH, Ritz CW, McLendon BL, Wilson JL. Growth, livability, feed consumption, and carcass composition of the Athens Canadian Random Bred 1955 meat-type chicken versus the 2012 high-yielding Cobb 500 broiler. Poult Sci 2014;93:2953–62.
https://doi.org/10.3382/ps.2014-04224
3. He D, Jiang Z, Tian Y, et al. Genetic variants in IL15 promoter affect transcription activity and intramuscular fat deposition in longissimus dorsi muscle of pigs. Anim Genet 2018;49:19–28.
https://doi.org/10.1111/age.12611
6. Wang Y, Chen H, Han D, et al. Correlation of the A-FABP gene polymorphism and mRNA expression with intramuscular fat content in three-yellow chicken and Hetian-Black chicken. Anim Biotechnol 2017;28:37–43.
https://doi.org/10.1080/10495398.2016.1194288
12. Zhang M, Ma X, Zhai Y, et al. Comprehensive transcriptome analysis of lncRNAs reveals the role of lncAD in chicken intramuscular and abdominal adipogenesis. J Agric Food Chem 2020;68:3678–88.
https://doi.org/10.1021/acs.jafc.9b07405
14. Vucicevic M, Stevanov-Pavlovic M, Stevanovic J, et al. Sex determination in 58 bird species and evaluation of CHD gene as a universal molecular marker in bird sexing. Zoo Biol 2013;32:269–76.
https://doi.org/10.1002/zoo.21010
20. Mao X, Cai T, Olyarchuk JG, Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005;21:3787–93.
https://doi.org/10.1093/bioinformatics/bti430
22. Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 2018;19:143–57.
https://doi.org/10.1038/nrm.2017.104
23. Wang L, Xie Y, Chen W, Zhang Y, Zeng Y. Identification and functional prediction of long noncoding RNAs related to intramuscular fat content in Laiwu pigs. Anim Biosci 2022;35:115–25.
https://doi.org/10.5713/ab.21.0092
27. Gan L, Liu Z, Wu T, Feng F, Sun C. αMSH promotes preadipocyte proliferation by alleviating ER stress-induced leptin resistance and by activating Notch1 signal in mice. Biochim Biophys Acta Mol Basis Dis 2017;1863:231–8.
https://doi.org/10.1016/j.bbadis.2016.10.001
30. Fernández-Galilea M, Tapia P, Cautivo K, Morselli E, Cortés VA. AGPAT2 deficiency impairs adipogenic differentiation in primary cultured preadipocytes in a non-autophagy or apoptosis dependent mechanism. J Biochem Biophys Res Commun 2015;467:39–45.
https://doi.org/10.1016/j.bbrc.2015.09.128
32. Meegalla Rupalie L, Billheimer Jeffrey T, Dong Cheng. Concerted elevation of acyl-coenzyme A: diacylglycerol acyltransferase (DGAT) activity through independent stimulation of mRNA expression of DGAT1 and DGAT2 by carbohydrate and insulin. J Biochem Biophys Res Commun 2002;298:317–23.
https://doi.org/10.1016/s0006-291x(02)02466-x
35. Triantafyllou EA, Georgatsou E, Mylonis I, Simos G, Paraskeva E. Expression of AGPAT2, an enzyme involved in the glycerophospholipid/triacylglycerol biosynthesis pathway, is directly regulated by HIF-1 and promotes survival and etoposide resistance of cancer cells under hypoxia. Biochim Biophys Acta Mol Cell Biol Lipids 2018;1863:1142–52.
https://doi.org/10.1016/j.bbalip.2018.06.015
37. Qiang X, Taoran T, Zhaozhao C, et al. Peroxisome proliferator-activated receptor (PPAR) in regenerative medicine: molecular mechanism for PPAR in stem cells’ adipocyte differentiation. Curr Stem Cell Res Ther 2016;11:290–8.
https://doi.org/10.2174/1574888X10666150902093755
40. Wu Z, Rosen ED, Brun R, et al. Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 1999;3:151–8.
https://doi.org/10.1016/S1097-2765(00)80306-8
42. Nobusue H, Kondo D, Yamamoto M, Kano K. Effects of lysophosphatidic acid on the in vitro proliferation and differentiation of a novel porcine preadipocyte cell line. Comp Biochem Physiol B Biochem Mol Biol 2010;157:401–7.
https://doi.org/10.1016/j.cbpb.2010.08.010