2. Tien YS, Chang CY, Chen LH. Experiment and development of rice straw extruder. In : Proceedings of the Symposium on Agricultural Engineering and Automation Project Achievements. Special Publication of TARI; 2013; 177:p. 38–43.
3. Sheikh GG, Ganai AM, Sheikh FA, et al. Effect of feeding urea molasses treated rice straw along with fibrolytic enzymes on the performance of Corriedale Sheep. J Entomol Zool Stud 2017;5:2626–30.
6. Khonkhaeng B, Cherdthong A, Chantaprasarn N, et al. Comparative effect of Volvariella volvacea-treated rice straw and purple corn stover fed at different levels on predicted methane production and milk fatty acid profiles in tropical dairy cows. Livest Sci 2021;251:104626.
https://doi.org/10.1016/j.livsci.2021.104626
7. Polyorach S, Wanapat M. Improving the quality of rice straw by urea and calcium hydroxide on rumen ecology, microbial protein synthesis in beef cattle. J Anim Physiol Anim Nutr 2015;99:449–56.
https://doi.org/10.1111/jpn.12253
8. Karimi E, Mehrabanjoubani P, Keshavarzian M, Oskoueian E, Jaafar HZE, Abdolzadeh A. Identification and quantification of phenolic and flavonoid components in straw and seed husk of some rice varieties (Oryza sativa L.) and their antioxidant properties. J Sci Food Agric 2014;94:2324–30.
https://doi.org/10.1002/jsfa.6567
12. Martínez AT, Speranza M, Ruiz-Duenas FJ, et al. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 2005;8:195–204.
13. Fan GJ, Wang BY, Lee TT, et al. In vitro assessment of quality improvement of solid-state fermented rice straw by edible mushroom waste medium. J Chin Soc Anim Sci 2016;45:Suppl236.
14. Chen MH, Li WS, Wu KT, et al. Recycling of spent king oyster mushroom substrate for production of mushrooms. J Taiwan Agric Res 2013;62:126–36.
15. Wang CC, Chang CH, Chang SC, et al. In vitro free radicals scavenging activity and antioxidant capacity of solid-state fermented wheat bran and its potential modulation of antioxidative molecular targets in chicken PBMC. R Bras Zootec 2016;45:451–7.
https://doi.org/10.1590/S1806-92902016000800005
16. Chiou PWS, Chuang CH, Yu B, Hwang SY, Chen CR. Application of cornell net carbohydrate and protein system to lactating cows in Taiwan. Asian-Australas J Anim Sci 2006;19:857–64.
https://doi.org/10.5713/ajas.2006.857
17. National Research Council. 2007 Nutrient requirements of small ruminants. Washington, DC, USA: National Academies Press; 2007.
18. Latimer GW. AOAC International Official methods of analysis of AOAC International. 19th edGaithersburg, MD, USA: AOAC International; 2012.
19. Lee CF, Shiao TF. Protocol modification of in vitro dry matter digestibility methods for ruminant feed evaluation. Taiwan Livest Res 2007;40:59.
20. Bai HC, Huang SY, Lin RS. Clinical hematology in livestock. Tainan, Taiwan: Li Fu Publisher; 1997.
22. Shiao TF, Chen JC, Yang DW, Lee SN, Lee CF, Cheng WTK. Feasibility assessment of a tunnel-ventilated, water-padded barn on alleviation of heat stress for lactating Holstein cows in a humid area. J Dairy Sci 2011;94:5393–404.
https://doi.org/10.3168/jds.2010-3730
23. Ørskov ER, McDonald I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agric Sci Camb 1979;92:499–503.
https://doi.org/10.1017/S0021859600063048
24. Tripathi MK, Mishra AS, Misra AK, Vaithiyanathan S, Prasad R, Jakhmola RC. Selection of white-rot basidiomycetes for bioconversion of mustard (Brassica compestris) straw under solid-state fermentation into energy substrate for rumen micro-organism. Lett Appl Microbiol 2008;46:364–70.
https://doi.org/10.1111/j.1472-765X.2008.02320.x
25. Karunanandaa K, Fales SL, Varga GA, Royse DJ. Chemical composition and biodegradability of crop residues colonized by white-rot fungi. J Sci Food Agric 1992;60:105–12.
https://doi.org/10.1002/jsfa.2740600117
26. Khattab HM, Gado HM, Salem AZM, et al. Chemical composition and in vitro digestibility of Pleurotus ostreatus spent rice straw. Anim Nutr Feed Technol 2013;13:507–16.
27. Misra AK, Mishra AS, Tripathi MK, Prasad R, Vaithiyanathan S, Jakhmola RC. Optimization of solid state fermentation of mustard (Brassica campestris) straw for production of animal feed by white rot fungi (Ganoderma lucidum). Asian-Australas J Anim Sci 2007;20:208–13.
https://doi.org/10.5713/ajas.2007.208
28. Agosin E, Tollier MT, Brillouet JM, Thivend P, Odier E. Fungal pretreatment of wheat straw: Effects on the biodegradability of cell walls, structural polysaccharides, lignin and phenolic acids by rumen microorganisms. J Sci Food Agric 1986;37:97–106.
https://doi.org/10.1002/jsfa.2740370202
29. Arora DS, Sharma RK. Comparative ligninolytic potential of Phlebia species and their role in improvement of in vitro digestibility of wheat straw. J Anim Feed Sci 2009;18:151–61.
https://doi.org/10.22358/jafs/66379/2009
30. Karunanandaa K, Varga GA. Colonization of crop residues by white-rot fungi: cell wall monosaccharides, phenolic acids, ruminal fermentation characteristics and digestibility of cell wall fiber components in vitro. Anim Feed Sci Technol 1996;63:273–88.
https://doi.org/10.1016/S0377-8401(96)01019-X
32. Kim YI, Cho WM, Hong SK, Oh YK, Kwak WS. Yield, nutrient characteristics, ruminal solubility and degradability of spent mushroom (Agaricus bisporus) substrates for ruminants. Asian-Australas J Anim Sci 2011;24:1560–8.
https://doi.org/10.5713/ajas.2011.11076
33. Mgheni DM, Kimambo AE, Sundstol F, Madsen J. Influence of urea treatment or supplementation on degradation, intake and growth performance of goats fed rice straw diets. Anim Feed Sci Technol 1993;44:209–20.
https://doi.org/10.1016/0377-8401(93)90048-O
34. Warly L, Fariani A, Fujihara T, et al. Effect of protein and energy supplementation on rumen degradation of fiber components, passage rate and distribution of digesta particle in sheep receiving rice straw as basal diet. In : Sustainable Animal Production and the Environment. II. Proceedings of the 7th AAAP, Animal Science Congress; July 11–16, 1994; p. 65–66.
35. Yang CMJ, Cheng YH, Lin YA, et al. Effect of ensiling on chemical composition and ruminal degradation of rice grass and straw. J Chin Soc Anim Sci 1996;25:273–86.
36. Myung KH, Kennelly JJ. Effect of alkaline hydrogen peroxide treatment of rice straw on in sacco ruminal digestibility. Asian-Australas J Anim Sci 1990;3:1–6.
https://doi.org/10.5713/ajas.1990.1
38. Fazaeli H, Jelan ZA, Mahmodzadeh H, Liang JB, Azizi A, Osman A. Effect of fungal treated wheat straw on the diet of lactating cows. Asian-Australas J Anim Sci 2002;15:1573–8.
https://doi.org/10.5713/ajas.2002.1573
39. Fazaeli H, Mahmodzadeh H, Jelan ZA, Rouzbehan Y, Liang JB, Azizi A. Utilization of fungal treated wheat straw in the diet of late lactating cow. Asian-Australas J Anim Sci 2004;17:467–72.
https://doi.org/10.5713/ajas.2004.467
41. Marutsova VJ, Binev RG. Changes in blood enzyme activities and some liver parameters in goats with subclinical ketosis. Bulg J Vet Med 2020;23:70–9.
https://doi.org/10.15547/bjvm.2175
42. Oh YK, Lee WM, Choi CW, et al. Effects of spent mushroom substrates supplementation on rumen fermentation and blood metabolites in Hanwoo steers. Asian-Australas J Anim Sci 2010;23:1608–13.
https://doi.org/10.5713/ajas.2010.10200