2. Babio N, Becerra-Tomás N, Martínez-González M, et al. Consumption of yogurt, low-fat milk, and other low-fat dairy products is associated with lower risk of metabolic syndrome incidence in an elderly Mediterranean population. J Nutr 2015;145:2308–16.
https://doi.org/10.3945/jn.115.214593
4. Brauss MS, Linforth RST, Cayeux I, Harvey B, Taylor AJ. Altering the fat content affects flavor release in a model yogurt system. J Agric Food Chem 1999;47:2055–9.
https://doi.org/10.1021/jf9810719
5. Prasanna PHP, Grandison AS, Charalampopoulos D. Screening human intestinal Bifidobacterium strains for growth, acidification, EPS production and viscosity potential in low-fat milk. Int Dairy J 2012;23:36–44.
https://doi.org/10.1016/j.idairyj.2011.09.008
7. London LE, Chaurin , Auty MA, et al. Use of Lactobacillus mucosae DPC 6426, an exopolysaccharide-producing strain, positively influences the techno-functional properties of yoghurt. Int Dairy J 2015;40:33–8.
https://doi.org/10.1016/j.idairyj.2014.08.011
8. Prasanna PHP, Grandison AS, Charalampopoulos D. Microbiological, chemical and rheological properties of low fat set yoghurt produced with exopolysaccharide (EPS) producing Bifidobacterium strains. Food Res Int 2013;51:15–22.
https://doi.org/10.1016/j.foodres.2012.11.016
9. Wang SY, Chen HC, Dai TY, Huang IN, Liu JR, Chen MJ. Identification of lactic acid bacteria in Taiwanese ropy fermented milk and evaluation of their microbial ecology in bovine and caprine milk. J Dairy Sci 2011;94:623–35.
https://doi.org/10.3168/jds.2010-3503
10. Caggianiello G, Kleerebezem M, Spano G. Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl Microbiol Biotechnol 2016;100:3877–86.
https://doi.org/10.1007/s00253-016-7471-2
11. Watanabe K, Fujimoto J, Sasamoto M, Dugersuren J, Tumursuh T, Demberel S. Diversity of lactic acid bacteria and yeasts in Airag and Tarag, traditional fermented milk products of Mongolia. World J Microbiol Biotechnol 2008;24:1313–25.
https://doi.org/10.1007/s11274-007-9604-3
13. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem 1956;28:350–6.
https://doi.org/10.1021/ac60111a017
14. Dried milk: determination of titratable acidity (ISO 6901:2010). International Organization for Standardization; 2010. [cited 2019 Sep 19]. Available from:
https://www.iso.org/standard/55777.html
15. Mani-Lopez E, Palou E, Lopez-Malo A. Probiotic viability and storage stability of yogurts and fermented milks prepared with several mixtures of lactic acid bacteria. J Dairy Sci 2014;97:2578–90.
https://doi.org/10.3168/jds.2013-7551
16. Damin MR, Minowa E, Alcantara MR, Oliveira MN. Effect of cold storage on culture viability and some rheological properties of fermented milk prepared with yogurt and probiotic bacteria. J Texture Stud 2008;39:40–55.
https://doi.org/10.1111/j.1745-4603.2007.00129.x
17. Rimada PS, Abraham AG. Comparative study of different methodologies to determine the exopolysaccharide produced by kefir grains in milk and whey. Lait 2003;83:79–87.
https://doi.org/10.1051/lait:2002051
20. Perez T, Balcazar JL, Peix A, et al. Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). Int J Syst Evol Microbiol 2011;61:1894–8.
https://doi.org/10.1099/ijs.0.023945-0
21. Meucci A, Zago M, Rossetti L, et al. Lactococcus hircilactis sp. nov. and Lactococcus laudensis sp. nov., isolated from milk. Int J Syst Evol Microbiol 2015;65:2091–6.
https://doi.org/10.1099/ijs.0.000225
22. Li TT, Tian WL, Gu CT. Elevation of Lactococcus lactis subsp. cremoris to the species level as Lactococcus cremoris sp. nov. and transfer of Lactococcus lactis subsp. tructae to Lactococcus cremoris as Lactococcus cremoris subsp. tructae comb. nov. Int J Syst Evol Microbiol 2021;71:004727.
https://doi.org/10.1099/ijsem.0.004727
25. Looijesteijn PJ, Hugenholtz J. Uncoupling of growth and exopolysaccharide production by Lactococcus lactis subsp. cremoris NIZO B40 and optimization of its synthesis. J Biosci Bioeng 1999;88:178–82.
https://doi.org/10.1016/S1389-1723(99)80198-4
27. Pearse MJ, Linklater PM, Hall RJ, Mackinlay AG. Effect of casein micelle composition and casein dephosphorylation on coagulation and syneresis. J Dairy Res 1986;53:381–90.
https://doi.org/10.1017/S0022029900025000
28. Kristo E, Miao Z, Corredig M. The role of exopolysaccharide produced by Lactococcus lactis subsp. cremoris in structure formation and recovery of acid milk gels. Int Dairy J 2011;21:656–2.
https://doi.org/10.1016/j.idairyj.2011.02.002