2. Zhu Z, Kawai T, Umehara T, MasudulHoque SA, Zeng W, Shimada M. Negative effects of ROS generated during linear sperm motility on gene expression and ATP generation in boar sperm mitochondria. Free Radic Biol Med 2019;141:159–71.
https://doi.org/10.1016/j.freeradbiomed.2019.06.018
4. Fernandez M, O’Flaherty C, Moawad A, O’Flaherty C. Peroxiredoxins are key players of the enzymatic antioxidant system in human spermatozoa. Protein science Hoboken, NJ, USA: Wiley; 2017. 26:p. 165
6. Zhu Z, Fan X, Lv Y, et al. Glutamine protects rabbit spermatozoa against oxidative stress via glutathione synthesis during cryopreservation. Reprod Fertil Dev 2017;29:2183–94.
https://doi.org/10.1071/RD17020
8. Gadea J, Molla M, Selles E, et al. Reduced glutathione content in human sperm is decreased after cryopreservation: Effect of the addition of reduced glutathione to the freezing and thawing extenders. Cryobiology 2011;62:40–6.
https://doi.org/10.1016/j.cryobiol.2010.12.001
9. Gadea J, Selles E, Marco MA, et al. Decrease in glutathione content in boar sperm after cryopreservation: Effect of the addition of reduced glutathione to the freezing and thawing extenders. Theriogenology 2004;62:690–701.
https://doi.org/10.1016/j.theriogenology.2003.11.013
10. Gadea J, Gumbao D, Matas C, Romar R. Supplementation of the thawing media with reduced glutathione improves function and the in vitro fertilizing ability of boar spermatozoa after cryopreservation. J Androl 2005;26:749–56.
https://doi.org/10.2164/jandrol.05057
11. Tuncer PB, Bucak MN, Buyukleblebici S, et al. The effect of cysteine and glutathione on sperm and oxidative stress parameters of post-thawed bull semen. Cryobiology 2010;61:303–7.
https://doi.org/10.1016/j.cryobiol.2010.09.009
13. Gadea J, Gumbao D, Gomez-Gimenez B, Gardon JC. Supplementation of the thawing medium with reduced glutathione improves function of frozen-thawed goat spermatozoa. Reprod Biol 2013;13:24–33.
https://doi.org/10.1016/j.repbio.2013.01.174
17. Partyka A, Nizanski W, Bratkowska M, Maslikowski P. Effects of N-acetyl-L-cysteine and catalase on the viability and motility of chicken sperm during liquid storage. Reprod Biol 2015;15:126–9.
https://doi.org/10.1016/j.repbio.2015.03.001
20. Lee AS, Lee SH, Lee S, Yang BK. Effects of streptozotocin and S-allyl-L-cysteine on motility, plasma membrane integrity, and mitochondrial activity of boar spermatozoa. Trop Anim Health Prod 2020;52:437–44.
https://doi.org/10.1007/s11250-019-01983-2
21. Ortega-Ferrusola C, Martin Munoz P, Ortiz-Rodriguez JM, et al. Depletion of thiols leads to redox deregulation, production of 4-hydroxinonenal and sperm senescence: a possible role for GSH regulation in spermatozoa. Biol Reprod 2019;100:1090–107.
https://doi.org/10.1093/biolre/ioy241
25. Wang ST, Chen HW, Sheen LY, Lii CK. Methionine and cysteine affect glutathione level, glutathione-related enzyme activities and the expression of glutathione S-transferase isozymes in rat hepatocytes. J Nutr 1997;127:2135–41.
https://doi.org/10.1093/jn/127.11.2135
32. Kothari S, Thompson A, Agarwal A, du Plessis SS. Free radicals: their beneficial and detrimental effects on sperm function. Indian J Exp Biol 2010;48:425–35.
33. Mahfouz R, Sharma R, Thiyagarajan A, et al. Semen characteristics and sperm DNA fragmentation in infertile men with low and high levels of seminal reactive oxygen species. Fertil Steril 2010;94:2141–6.
https://doi.org/10.1016/j.fertnstert.2009.12.030
34. Amaral S, Amaral A, Ramalho-Santos J. Aging and male reproductive function: a mitochondrial perspective. Front Biosci (Schol Ed) 2013;5:181–97.
https://doi.org/10.2741/s365