Validation of CH4 emissions estimated by LMD against those measured by infrared-absorption-based gas analyzer in an indirect open-circuit respiration calorimeter chamber (Exp 1)
The CH
4 emissions of cattle were estimated by both respiration chamber and LMD. Because of a lack of respiration chambers in Ethiopia (the site for Exp 2), we performed this experiment at Linze Grassland Agriculture Trial Station (39.24°N, 100.06°E), Lanzhou University, China, using two Simmental crossbred male beef cattle (not castrated; body weight [BW], 224 and 260 kg; age, 9 mo). The experimental period was 12 d (17 to 28 Sept 2019). Each animal was provided one of two diets throughout the experimental period: a high-concentrate diet (HC) comprising alfalfa hay (1.1 kg-dry matter [DM]/d), wheat straw (1.1 kg-DM/d), and commercial concentrate feed (1.5 kg-DM/d), or a low-concentrate diet (LC) comprising the same feed ingredients but at 2.5, 2.5, and 0.8 kg-DM/d, respectively (
Supplementary Tables S1 and S2). Both diets were designed to provide the net energy and crude protein required for a bull to gain 1 kg BW daily on the basis of the estimation equation and tabular values of feed ingredients presented in Feeding Standard for Beef Cattle [
12]. The daily DM intakes of roughage (alfalfa hay and wheat straw) and of the concentrate feed were recorded for each animal throughout the experimental period.
After 5 d in cubicle accommodation (i.e., on d 6 after the start of cubicle accommodation), each animal was transferred to an indirect open-circuit respiration calorimeter chamber (chamber capacity, 17.8 m3) for 7 d (4 d for adaptation and 3 d for measurement). The CH4 concentration in the exhaust air from each chamber was measured every 15 min for 48 h by using an infrared-absorption-based gas analyzer (VA-3000, Horiba Ltd., Kyoto, Japan). The air temperature and humidity in the chamber were recorded continuously and remained in the range from 12.2°C to 25.5°C and from 17.9% to 56.7%, respectively. Air influx in each chamber adjusted for the gas volume under standard conditions was recorded. On d 10, samples of the feed ingredients were collected to determine the concentrations of ash-free neutral detergent fiber (NDFom).
While the cattle were in the respiration chamber, CH4 concentrations were measured simultaneously by using both the gas analyzer and an LMD (SA3C32B, Tokyo Gas Engineering Co. Ltd., Tokyo, Japan) for two 12-h periods from 18:00 to 06:00. The LMD instrument uses a non-visible laser and infrared-absorption spectroscopy to measure the CH4 concentration (LMD-CH4) at 0.5-s intervals. The wavelength of the infrared ray is fixed at 1,653 nm, which corresponds to the absorption line of CH4.
LMD-CH
4 was measured in the respiration chamber with the LMD held at a distance of 0.6 to 1.2 m from the animal’s nostrils. However, the frequent movement of cattle during the day made it difficult to accurately aim the LMD. A preliminary experiment prior to Exp 1 revealed that the average CH
4 emissions (mg-CH
4/min) of four cattle in the respiration chambers over two 23-h periods (each from 07:00 to 06:00) were highly correlated with the average values for the 12-h period from 18:00 to 06:00. The average CH
4 emissions over 23 h (
y, mg-CH
4/min) were therefore estimated from those over 12 h (
x, mg-CH
4/min) with
y = 1.072
x–1.891 (
r2 = 0.95). A similar correlation has been reported for eight steers in respiration chambers between 24-h and nocturnal (00:00 to 06:30) heat-production values (
r2 = 0.81 to 0.90), and between 24-h heat-production and CH
4 emissions (
r2 = 0.55 to 0.66) [
13]. Therefore, we assumed that the CH
4 emissions measured at night would provide acceptable estimation of 24-h CH
4 emissions.
LMD-CH4 was measured once an hour during the night for two 12-h periods (18:00 to 06:00) for each animal. Each of the LMD-CH4 measurement took less than 5 min, and 2 to 3 min of data per measurement were used after eliminating data not usable for analysis (e.g., data where the LMD was not pointing exactly at the nostril). Entry of a person into the chamber for the purpose of taking measurements was assumed to have minimal effects on the animals. Nevertheless, to reduce the effects of the person’s entry, we kept the doors of respiration chambers closed after the entry for each measurement, and standardized the length of time spent in the respiration chamber for each measurement.
In the preliminary LMD-CH
4 datasets, two trends in the LMD-CH
4 values were observed, one for eructation and another for respiration; this is consistent with a previous report [
10]. Therefore, assuming a double normal distribution, each hourly LMD-CH
4 dataset was split into two sub-datasets, one for eructation and one for respiration. A total of five statistical parameters were calculated for each dataset: the mean and the standard deviation for the LMD-CH
4 values within each of the two sub-datasets and the ratio distribution for the two sub-datasets that achieved the highest likelihood. For the calculation of these five parameters, the nonlinear generalized reduced gradient solving (nonlinear GRG) method in Excel 2019 (Microsoft Corporation, Redmond, WA, USA) was used. The higher LMD measurements were assumed to represent CH
4 emissions by eructation, whereas the lower LMD measurements were considered to represent CH
4 emissions by respiration.
Then, the two probabilities for a single LMD-CH
4 value, namely one in the normal distribution for respiration and the other in the normal distribution for eructation, were calculated. Each LMD-CH
4 value was then categorized according to these probabilities into one of two sub-datasets (for eructation or for respiration) (
Supplementary Figure S1). The LMD-CH
4 datasets that could not be clearly separated into the two sub-datasets (
i.e., dataset with a low power for the test for eructation and respiration) were excluded. Of the 42 LMD-CH
4 datasets collected from the two cattle, 34 could be separated into two normal distributions, one each for respiration and eructation. The statistical power of the test for each of the 34 datasets ranged from 72.8% to 94.8%.
Each of the 34 datasets contained three mean values: ones for the two sub-datasets (for respiration and eructation) and the other for the combined sub-datasets (before their separation into respiration and eructation). Furthermore, three mean-value groups were obtained: the first group composed of 34 mean values for the 34 sub-datasets for respiration, the second group for the 34 sub-datasets for eructation, and the third group for the 34 datasets before separation into respiration and eructation. Each of the three mean-value groups was then regressed by using the least-squares method against the dataset obtained from the respiration chamber measurements.
During the analysis, we observed time delays for when the values obtained by the LMD were reflected in the values recorded by the gas analyzer. These delays were probably related to the distance from the respiration chamber to the gas analyzer, which was in the general control room. Therefore, we calculated correlation coefficients for each of the three mean-value groups and each of six datasets obtained with the gas analyzer at 0, 15, 30, 45, 60, and 75 min after the LMD-CH4 measurement. The correlation coefficients were calculated by using R statistical software (version 3.1.1, R Foundation for Statistical Computing, Vienna, Austria). By using the pair of datasets with the highest correlation coefficient, an equation to estimate daily CH4 emissions using the nocturnal LMD values was formulated.
Comparison of CH4 emissions from grazing versus indoor-fed dairy cows (Exp 2)
A feeding trial for indigenous cows (Fogera breed) was performed for 24 d (from 21 Aug to 13 Sept 2019) at Andassa Livestock Research Center, Ethiopia (11.42 to 11.92°N, 37.07 to 37.65°E; elevation, 1,730 to 1,750 m above sea level). This center recently received 1,434 mm of annual rainfall, and the average daily temperature ranged from 8.8°C (in Jan) to 29.5°C (in Mar) (data supplied by the Andassa Research Center). Twelve multiparous (2 or 3 parity) dairy cows (mean BW, 227.4±23.1 kg) in midlactation (107±27 d in milk at the start of Exp 2) were allocated into one of three feeding groups: a grazing group (GG, n = 4; control) and two indoor-feeding groups fed with natural-grassland hay (CG1, n = 4) or with Napier-grass (Pennisetum purpureum) hay (CG2, n = 4).
The natural-grassland hay used as the feed for CG1 was purchased from a private dairy farm and was composed mainly of
Andropogon,
Cynodon,
Digitaria,
Hyparrhenia, and
Panicum spp. as well as
Trifolium quartinianum, T
rifolium polystachyum, and
Indigofera atriceps. In addition to these species,
Trifolium subterraneum and
Eleusine indica were observed on the grazing land of the research center used for GG. Napier grass was also examined because it was widely available and was assumed to be a major forage in the drylands of Ethiopia owing to its high DM yield (18 to 23 t-DM/ha/yr) [
14] and high crude-protein content (15.8% DM) [
15]. The Napier grass was harvested from irrigated land at the research center and air dried in the field for at least 3 d before use.
All three diets were designed to provide sufficient net energy and crude protein for a 3-kg daily milk yield by using the BW of the cows, the estimation equation presented in Nutrient Requirements of Dairy Cattle [
16], and reported nutrient concentrations of the feed ingredients [
17]. For the GG cows, natural-grassland hay, Napier grass, and concentrate were offered, respectively, at 0.0, 0.0, and 1.5 kg-DM/d; for the CG1 cows at 3.2, 0.0, and 1.5 kg-DM/d; and for the CG2 cows at 0.0, 3.8, and 1.5 kg-DM/d. The GG cows were expected to graze similar amounts of natural-grassland hay as the CG1 cows.
The daily feed allowance for each cow was adjusted on the basis of BW at the start of the experiment. Throughout the experimental period, the GG cows were allowed to graze daily from 8:00 to 16:00 and were accommodated indoors during rest hours; no roughage (natural-grassland hay or Napier grass) was provided when the cows were accommodated indoors. The CG1 and CG2 cows were provided with natural-grassland hay and Napier grass, respectively, twice a day (at 08:00 and 17:00). The roughage for CG1 and CG2 was chopped into 5- to 10-cm lengths for feeding. The feed for all the groups was supplemented with concentrate feed when the cows were milked twice a day at 07:00 and 16:00. The concentrate consisted (on a DM basis) of maize grain (40%), Noug seed cake (49%), wheat bran (8%), salt (1%), and ruminant premix (2%; Intraco Ltd., Antwerp, Belgium). All the cows were offered water twice a day during the daytime.
As described for Exp 1, LMD-CH4 values were recorded for each cow each hour for 2 nights (i.e., two periods of 18:00 to 06:00) after the adaptation period had passed (from d 6). Of the 286 datasets of hourly LMD-CH4 measurements from the 12 cattle, 263 could be separated into two normal distributions for respiration and eructation. The statistical power of the test for eructation and respiration in each of the 263 datasets ranged from 75.3% to 98.1%. By using the regression equation obtained in Exp 1, the mean value of each of the three mean-value groups—for eructation, respiration, or both—was converted into a daily CH4 emission for each cow.
The weight of feed offered and refusals were recorded daily throughout the experimental period to calculate daily feed intake. Samples of the feed ingredients (grazing herbage, natural-grassland hay, Napier grass, and concentrate) were collected for chemical analysis on d 17. The BW of each cow was recorded at the start and end of the experiment, and on the days of LMD measurement. Daily milk yields (summation of both the morning milking and afternoon milking) were measured throughout the experimental period.
To examine the fecal excretions and determine digestive coefficients for all of the cows, spot fecal samples (about 500 g/sample) were collected three times a day from d 17 to 21 and stored at −15°C until analysis. In addition, to estimate the DM intake for the four GG cows, 2.5 g of ground chromium oxide (Cr2O3) was mixed with the concentrate feed provided twice a day, from d 12 to 18, and again spot samples fecal were collected.
The feed and fecal samples were dried at 105°C in a forced-air oven for more than 6 hours to constant weight and ground to pass through a 1-mm screen. Then, by using the standard methods of the Association of Official Analytical Chemists [
18], the concentrations of crude protein (method no. 984.13), ether-extracted fat (crude fat; 920.39), ash-free acid detergent fiber and acid detergent lignin (973.18), and crude ash (942.05) in the dried feed and fecal samples were determined. The concentration of NDFom was determined as reported elsewhere [
19]. Fecal Cr
2O
3 concentrations were also determined as reported elsewhere [
20], and the weight of fecal excretions of the GG cows were estimated. The DM digestive coefficients of all the cows were then calculated by using the acid detergent lignin concentrations in the feed and fecal samples as internal markers. We used the DM digestive coefficients and the weight of fecal excretions to calculate the DM intake of GG cows.
Two estimates of CH
4 emissions were calculated by using the following equations reported by Niu et al [
21] and Hristov et al [
22], respectively:
The GEI value used in the equation of Hristov et al [
22] was calculated by using an equation reported elsewhere [
23]. These two estimates were compared with the CH
4 emissions recorded by the gas analyzer in Exp 1 and with those estimated by using the LMD in Exp 2.
Each of the datasets obtained in Exp 2 was analyzed by using the model yij = μ+αi+ɛij, where yij is the dependent variable, μ is the overall mean value for each dataset, αi is the fixed effect of treatments (feeding style and ingredients), and ɛij is the random residual error of the jth cow with the ith treatment. Differences in means among the three groups were tested by using one-way analysis of variance. When the treatment effect was significant (p<0.05), multiple comparisons were tested using Tukey’s method. These statistical analyses were performed with R statistical software (version 3.1.1, R Foundation for Statistical Computing, Vienna, Austria).