1. Zavadilová L, Štípková M, Svitáková A, Krupová Z, Kašná E. Genetic parameters for clinical mastitis, fertility and somatic cell score in czech holstein cattle. Ann Anim Sci 2017;17:1007–18.
https://doi.org/10.1515/aoas-2017-0006
2. Täubert H, Rensing S, Stock KF, Reinhardt F. Development of a breeding value for mastitis based on SCS-results. Interbull Bull 2013;161–5.
5. Durán Aguilar M, Román Ponce SI, Ruiz López FJ, et al. Genome-wide association study for milk somatic cell score in holstein cattle using copy number variation as markers. J Anim Breed Genet 2017;134:49–59.
https://doi.org/10.1111/jbg.12238
6. Govignon-Gion A, Dassonneville R, Baloche G, Ducrocq V. Multiple trait genetic evaluation of clinical mastitis in three dairy cattle breeds. Animal 2016;10:558–65.
https://doi.org/10.1017/S1751731115002529
8. Falconer DS. Introduction to quantitative genetics. 3rd edHarlow, UK: Longman Scientific & Technical; 1989.
9. Tiezzi F, de los Campos G, Parker Gaddis KL, Maltecca C. Genotype by environment (climate) interaction improves genomic prediction for production traits in US Holstein cattle. J Dairy Sci 2017;100:2042–56.
https://doi.org/10.3168/jds.2016-11543
12. SAS Institute Inc. SAS 9.1.3 Help and documentation. Cary, NC, USA: SAS Institute Inc; 2013.
15. Cardoso FF, Tempelman RJ. Linear reaction norm models for genetic merit prediction of Angus cattle under genotype by environment interaction. J Anim Sci 2012;90:2130–41.
https://doi.org/10.2527/jas.2011-4333
16. MdAPeA. Instrução normativa Nº 31, de 29 de junho de. 2018.
17. United States Department of Agriculture. Determining U.S. milk quality using bulk-tank somatic cell counts 2018. Fort Collins, CO, USA: USDA; 2018.
18. de Paula MC, Martins EN, da Silva LOC, de Oliveira CAL, Valotto AA, Ribas NP. Interação genótipo × ambiente para produção de leite de bovinos da raça Holandesa entre bacias leiteiras no estado do Paraná. Rev Bras Zootec 2009;38:467–73.
https://doi.org/10.1590/S1516-35982009000300010
19. Haiduck Padilha A, Alfonzo EPM, Daltro DS, Torres HAL, Braccini Neto J, Cobuci JA. Genetic trends and genetic correlations between 305-day milk yield, persistency and somatic cell score of Holstein cows in Brazil using random regression model. Anim Prod Sci 2019;59:207–15.
https://doi.org/10.1071/AN16835
22. Bohlouli M, Alijani S, Naderi S, Yin T, König S. Prediction accuracies and genetic parameters for test-day traits from genomic and pedigree-based random regression models with or without heat stress interactions. J Dairy Sci 2019;102:488–502.
https://doi.org/10.3168/jds.2018-15329
24. Pegolo NT, Albuquerque LG, Lôbo RB, de Oliveira HN. Effects of sex and age on genotype × environment interaction for beef cattle body weight studied using reaction norm models1. J Anim Sci 2011;89:3410–25.
https://doi.org/10.2527/jas.2010-3520
26. Morrissey MB, Liefting M. Variation in reaction norms: statistical considerations and biological interpretation. Evolution 2016;70:1944–59.
https://doi.org/10.1111/evo.13003
27. Robertson A. Experimental design on the measurement of heritabilities and genetic correlations: biometrical genetics. New York, USA: Pergamon; 1959. p. 219–26.
28. Kolmodin R, Strandberg E, Danell B, Jorjani H. Reaction norms for protein yield and days open in Swedish red and white dairy cattle in relation to various environmental variables. Acta Agric Scand A Anim Sci 2004;54:139–51.
https://doi.org/10.1080/09064700410032040
29. van der Veen AA, ten Napel J, Oosting SJ, Bontsema J, van der Zijpp AJ, Groot Koerkamp PWG. Robust performance: principles and potential applications in livestock production systems. In : Proceedings of the Joint International Agricultural Conference 2009; 2009 Jul 6–8; Netherlands. p. 173–80.
30. Bohlouli M, Shodja J, Alijani S, Pirany N. Interaction between genotype and geographical region for milk production traits of Iranian Holstein dairy cattle. Livest Sci 2014;169:1–9.
https://doi.org/10.1016/j.livsci.2014.08.010