3. Hagnestam-Nielsen C, Emanuelson U, Berglund B, Strandberg E. Relationship between somatic cell count and milk yield in different stages of lactation. J Dairy Sci 2009;92:3124–33.
https://doi.org/10.3168/jds.2008-1719
4. Sordillo LM, Streicher KL. Mammary gland immunity and mastitis susceptibility. J Mammary Gland Biol Neoplasia 2002;7:135–46.
12. Chang G, Petzl W, Vanselow J, Günther J, Shen X, Seyfert HM. Epigenetic mechanisms contribute to enhanced expression of immune response genes in the liver of cows after experimentally induced
Escherichia coli mastitis. Vet J 2015;203:339–41.
https://doi.org/10.1016/j.tvjl.2014.12.023
13. Song MY, He YH, Zhou HK, Zhang Y, Yu Y. Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine
Staphylococcus aureus subclinical mastitis. Sci Rep 2016;6:29390.
https://doi.org/10.1038/srep29390
14. Breyne K, Honaker RW, Hobbs Z, et al. Efficacy and safety of a bovine-associated
Staphylococcus aureus phage cocktail in a murine model of mastitis. Front Microbiol 2017;8:2348.
https://doi.org/10.3389/fmicb.2017.02348
15. Guevara MÁ, de María N, Sáez-Laguna E, Vélez MD, Cervera MT, Cabezas JA. Analysis of DNA cytosine methylation patterns using methylation-sensitive amplification polymorphism (MSAP). Kovalchuk I, editorPlant Epigenetics Methods in Molecular Biology. Boston, MA, USA: Humana Press; 2017. 1456:99–112.
https://doi.org/10.1007/978-1-4899-7708-3_9
17. National Mastitis Council. Laboratory handbook on bovine mastitis. Nat Mastitis Council; 1999.
18. Gao J, Ferreri M, Liu XQ, Chen LB, Su JL, Han B. Development of multiplex polymerase chain reaction assay for rapid detection of
Staphylococcus aureus and selected antibiotic resistance genes in bovine mastitic milk samples. J Vet Diagn Invest 2011;23:894–901.
https://doi.org/10.1177/1040638711416964
22. Fan LJ, Zhang MZ, Wei YY, et al. Establishment of mice models of staphylococcus aureus of dairy cows mastitis. Laboratory Anim Sci 2011;28:1–6.
24. Huang J, Sun M. A modified AFLP with fluorescence-labelled primers and automated DNA sequencer detection for efficient fingerprinting analysis in plants. Biotechnol Tech 1999;13:277–8.
https://doi.org/10.1023/A:1008970618252
25. Luciano M, Huffman JE, Arias-Vásquez A, et al. Genome-wide association uncovers shared genetic effects among personality traits and mood states. Am J Med Genet B Neuropsychiatr Genet 2016;159B:684–95.
https://doi.org/10.1002/ajmg.b.32072
26. Chen C, Bartenhagen C, Gombert M, et al. Next-generation-sequencing-based risk stratification and identification of new genes involved in structural and sequence variations in near haploid lymphoblastic leukemia. Genes Chromosomes Cancer 2013;52:564–79.
https://doi.org/10.1002/gcc.22054
27. Yu Y, Zhang H, Tian F, et al. Quantitative evaluation of DNA methylation patterns for
ALVE and
TVB genes in a neoplastic disease susceptible and resistant chicken model. PloS One 2008;3:e1731.
https://doi.org/10.1371/journal.pone.0001731
28. Eymery A, Liu Z, Ozonov EA, Stadler MB, Peters AH. The methyltransferase
Setdb1 is essential for meiosis and mitosis in mouse oocytes and early embryos. Development 2016;143:2767–79.
https://doi.org/10.1242/dev.132746
29. Sekhon RS, Peterson T, Chopra S. Epigenetic modifications of distinct sequences of the
p1 regulatory gene specify tissue-specific expression patterns in maize. Genetics 2007;175:1059–70.
https://doi.org/10.1534/genetics.106.066134