2. Mottet A, Tempio G. Global poultry production: current state and future outlook and challenges. World’s Poult Sci J 2017;73:245–56.
3. Ravindran V. Poultry development review: Poultry feed availability and nutrition in developing countries. Rome, Italy: Food and Agriculture Organization of the United Nations; 2013.
5. Kras RV, Kessler AM, Ribeiro AML, et al. Effect of dietary fiber and genetic strain on the performance and energy balance of broiler chickens. Braz J Poult Sci 2013;15:15–9.
6. Satinder K, Savita S, Nagi HPS. Functional properties and anti-nutritional factors in cereal bran. Asian J Food Agro-Ind 2011;4:122–31.
7. Tahir MI, Khalique A, Pasha TN, Bhatti JA. Comparative evaluation of maize bran, wheat bran and rice bran on milk production of Holstein Friesian cattle. Int J Agric Biol 2002;4:559–60.
8. Hasselman K, Aman P. The effect of β-glucanase on the utilization of starch and nitrogen by broiler chicks fed on barley of low- or high viscosity. Anim Feed Sci Technol 1986;15:83–93.
9. Munir K, Maqsood S. A review on role of exogenous enzyme supplementation in poultry production. Emir J Food Agric 2013;25:66–80.
10. Ravindran V. Feed enzymes: The science, practice, and metabolic realities. J Appl Poult Res 2013;22:628–36.
11. Wang Y, McAllister TA. Rumen microbes, enzymes and feed digestion-a review. Asian-Australas J Anim Sci 2002;15:1659–76.
12. Adeyemi OA, Familade FO. Replacement of maize by rumen filtrate fermented corn-cob in layer diets. Bioresour Technol 2003;90:221–4.
13. Dijkstra J, Tamminga S. Simulation of the effects of diet on the contribution of rumen protozoa to degradation of fiber in the rumen. Br J Nutr 1995;74:617–34.
14. McDougall EI. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem J 1948;43:99–109.
15. Shen J, Liu Z, Yu Z, Zhu W. Monensin and Nisin affect rumen fermentation and microbiota differently
in vitro. Front Microbiol 2017;8:1111.
16. Sechler SR, Mullenix MK, Holland CM, Muntifering RB. Fiber digestion kinetics and protein degradability characteristics of stockpiled Tifton 85 bermudagrass. J Anim Sci 2017;95:3922–31.
17. Weiss CP, Gentry WW, Cole NA, McCollum FT, Jennings JS. Effects of feeding condensed distiller’s solubles and crude glycerin alone or in combination on finishing beef cattle performance, carcass characteristics, and
in vitro fermentation. J Anim Sci 2017;95:922–9.
19. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74:3583–97.
20. Naumann C, Bassler R. The chemical analysis of feed stuff. Method Book. III:3rdVDLUFA Verlag; Darmstadt, Germany: 1997.
21. Lopez D, Vazquez AJF, Lopez VN, et al.
In vitro gas production of foliage from three browse tree species treated with different dose levels of exogenous fibrolytic enzymes. J Anim Physiol Anim Nutr 2016;100:920–8.
22. Duarte AC, Durmic Z, Vercoe PE, Chaves AV. Dose-response effects of dietary pequi oil on fermentation characteristics and microbial population using a rumen simulation technique (Rusitec). Anaerobe 2017;48:59–65.
24. Santra A, Chaturvedi OH, Tripathi MK, Kumar R, Karim SA. Effect of dietary sodium bicarbonate supplementation on fermentation characteristics and ciliate protozoal population in rumen of lambs. Small Rumin Res 2003;47:203–12.
25. Grant RJ, Weidner SJ. Digestion kinetics of fiber: influence of
in vitro buffer pH varied within observed physiological range. J Dairy Sci 1992;75:1060–8.
26. Mourino F, Akkarawongsa R, Weimer PJ. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms
in vitro. J Dairy Sci 2001;84:848–59.
27. Dijkstra J, Ellis JL, Kebreab E, et al. Ruminal pH regulation and nutritional consequences of low pH. Anim Feed Sci Technol 2012;172:22–33.
29. Sato S. Pathophysiological evaluation of subacute ruminal acidosis (SARA) by continuous ruminal pH monitoring. Anim Sci J 2016;87:168–77.
30. Chibisa GE, Beauchemin KA, Penner GB. Relative contribution of ruminal buffering systems to pH regulation in feedlot cattle fed either low or high-forage diets. Animal 2016;10:1164–72.
31. Cruywagen CW, Taylor S, Beya MM, Calitz T. The effect of buffering dairy cow diets with limestone, calcareous marine algae, or sodium bicarbonate on ruminal pH profiles, production responses, and rumen fermentation. J Dairy Sci 2015;98:5506–5514.
32. Wizna , Abbas H, Rizal Y, et al. Improving the Quality of Sago pith and rumen content mixture as poultry feed through fermentation by
Bacillus amyloliquefaciens. Pak J Nutr 2008;7:249–54.
33. Jazi V, Boldaji F, Dastar B, Hashemi SR, Ashayerizadeh A. Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens. J Br Poult Sci 2017;58:402–8.
34. Aanuoluwapo AA, Gbenga EO. Growth performance, haematology and meat quality of broiler chickens fed rumen liquor-fermented wheat bran-based diets. Jordan J Agric Sci 2014;10:725–36.
35. Liu Q, Wang C, Li HQ, et al. Effects of dietary protein levels and rumen-protected pantothenate on ruminal fermentation, microbial enzyme activity and bacteria population in
Blonde d’Aquitaine ×
Simmental beef steers. Anim Feed Sci Technol 2017;232:31–9.
36. Reis WLS, Detmann E, Batista ED, et al. Effects of ruminal and post-ruminal protein supplementation in cattle fed tropical forages on insoluble fiber degradation, activity of fibrolytic enzymes, and the ruminal microbial community profile. Anim Feed Sci Technol 2016;218:1–16.
37. Da Silva LD, Pereira OG, Silva TCD, Valadares FSC, Ribeiro KG. Effects of silage crop and dietary crude protein levels on digestibility ruminal fermentation, nitrogen use efficiency, and performance of finishing beef cattle. Anim Feed Sci Technol 2016;220:22–33.
38. Ouellet DR, Chiquette J. Effect of dietary metabolizable protein level and live yeasts on ruminal fermentation and nitrogen utilization in lactating dairy cows on a high red clover silage diet. Anim Feed Sci Technol 2016;220:73–82.
39. Pantoja J, Firkins JL, Eastridge ML, Hull BL. Effects of fat saturation and source of fiber on site of nutrient digestion and milk production by lactating dairy cows. J Dairy Sci 1994;77:2341–56.
40. Oldick BS, Firkins JL. Effects of degree of fat saturation on fiber digestion and microbial protein synthesis when diets are fed twelve times daily. J Anim Sci 2000;78:2412–20.
41. Van Soest PJ. Nutritional ecology of the ruminant. 2nd edIthaca, NY, USA: Cornell University Press; 1994. p. 476