1. Fang T, Liu G, Cao W, et al. Spermine: new insights into the intestinal development and serum antioxidant status of suckling piglets. RSC Adv 2016;6:31323–35.
2. Liu G, Fang T, Yan T, et al. Metabolomic strategy for the detection of metabolic effects of spermine supplementation in weaned rats. J Agric Food Chem 2014;62:9035–42.
3. Cao W, Wu X, Jia G, et al. New insights into the role of dietary spermine on inflammation, immune function and related-signalling molecules in the thymus and spleen of piglets. Arch Anim Nutr 2017;71:175–91.
4. Pegg AE. The function of spermine. IUBMB Life 2014;66:8–18.
5. Liu GM, Yan T, Fang TT, et al. Nutrimetabolomic analysis provides new insights into spermine-induced ileum-system alterations for suckling rats. RSC Adv 2015;5:48769–78.
7. Nitta T, Igarashi K, Yamashita A, Yamamoto M, Yamamoto N. Involvement of polyamines in B cell receptor-mediated apoptosis: spermine functions as a negative modulator. Exp Cell Res 2001;265:174–83.
8. Miller ER, Ullrey DE. The pig as a model for human nutrition. Annu Rev Nutr 1987;7:361–82.
9. Yin J, Ren W, Duan J, et al. Dietary arginine supplementation enhances intestinal expression of SLC7A7 and SLC7A1 and ameliorates growth depression in mycotoxin-challenged pigs. Amino Acids 2014;46:883–92.
10. National Research Council (NRC). Nutrient requirements of swine. Washington, DC, USA: National Academy Press; 1998.
11. Cheng ZB, Li DF, Xing JJ, Guo XY, Li ZJ. Oral administration of spermine advances intestinal maturation in sucking piglets. Anim Sci 2006;82:621–6.
13. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 2001;25:402–8.
14. Romain N, Dandrifosse G, Jeusette F, Forget P. Polyamine concentration in rat milk and food, human milk, and infant formulas. Pediatr Res 1992;32:58–63.
17. Zhao Z, Liu J, Wang C, et al. MicroRNA-25 regulates small cell lung cancer cell development and cell cycle through cyclin E2. Int J Clin Exp Pathol 2014;7:7726–34.
20. Yang SD, Bai ZL, Zhang F, et al. Levofloxacin increases the effect of serum deprivation on anoikis of rat nucleus pulposus cells via Bax/Bcl-2/caspase-3 pathway. Toxicol Mech Methods 2014;24:688–96.
21. Loh KP, Huang SH, De Silva R, Tan BK, Zhu YZ. Oxidative stress: apoptosis in neuronal injury. Curr Alzheimer Res 2006;3:327–37.
22. Wu B, Cui H, Peng X, et al. Dietary nickel chloride induces oxidative stress, apoptosis and alters Bax/Bcl-2 and caspase-3 mRNA expression in the cecal tonsil of broilers. Food Chem Toxicol 2014;63:18–29.
23. Zheng TS, Flavell RA. Divinations and surprises: genetic analysis of caspase function in mice. Exp Cell Res 2000;256:67–73.
24. Antonsson B, Martinou JC. The Bcl-2 protein family. Exp Cell Res 2000;256:50–7.
25. Daniel H, Kottra G. The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch 2004;447:610–8.
26. Kristensen AS, Andersen J, Jørgensen TN, et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 2011;63:585–640.
27. Roth E. Immune and cell modulation by amino acids. Clin Nutr 2007;26:535–44.
28. Kanai Y, Clémençon B, Simonin A, et al. The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol Aspects Med 2013;34:108–20.
29. Verrey F, Closs EI, Wagner CA, et al. CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch 2004;447:532–42.
30. Fotiadis D, Kanai Y, Palacín M. The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med 2013;34:139–58.